181 research outputs found

    Essays on Decisions Involving Recurring Financial Events

    Get PDF
    This dissertation explores what influences consumer financial decisions with consequences that recur over time, such as mortgages and recurring payment plans in contracts. This dissertation investigates two questions: (1) How do individual differences in intertemporal preferences influence how consumers think about recurring financial events? (2) How does the aggregation level used to describe the recurring financial consequences impact how consumers mentally represent the purchase? Taken together, this dissertation explores how consumers mentally represent recurring outcomes and express these preferences through choice. The first essay explores the relationship between individual differences in time preferences and decisions involving recurring payments in the domain of mortgage choices. It relates two components of an individual's time preference, a present bias (overvaluing immediate outcomes), and a personal discount rate (the exponential component of time preferences), to mortgage selection and the decision to strategically abandon a home worth less than its mortgage. Combining insights from an analytic model and a survey of 244 mortgaged households augmented by zip-code market house price data, this essay proposes that consumers with greater present bias and exponential discounting are more likely to choose mortgages that minimize up-front costs and be underwater. This model also suggests that present bias decreases the likelihood of walking away, but that higher discounting increases that likelihood, a result consistent with the data. Time preferences remain robust predictors with individual and market-level controls, and alternate model specifications. The second essay explores how the aggregation level of a recurring price (e.g. on a daily vs. a yearly basis) impacts how consumers mentally account for a contract's benefits. For example, if consumers are told the daily price of a car lease, they imagine the daily benefits of the car, and when they are told a monthly price they imagine their broader use of the car. This essay builds on the "pennies-a-day" model (Gourville 1998), which posits that narrowly framed recurring costs can increase a consumer's willingness to purchase by making the cost of a purchase seem trivial. The essay will present evidence that triviality is neither a necessary nor sufficient condition for narrow framing to increase willingness to purchase and expand the domain of situations where such narrow framing increases purchase. Five web-based experiments suggest that scope insensitivity plays an important role in this effect since under recurring costs, consumers repeatedly "book" the most valued units, while under one-time costs consumers tend to experience less return to scale. Together, the two essays suggest that contracts involving recurring financial events are mentally represented differently from those with one-time financial events, and that content is then discounted based on intertemporal preferences

    Effect of Personalized Incentives on Dietary Quality of Groceries Purchased A Randomized Crossover Trial

    Get PDF
    Importance Many factors are associated with food choice. Personalized interventions could help improve dietary intake by using individual purchasing preferences to promote healthier grocery purchases. Objective To test whether a healthy food incentive intervention using an algorithm incorporating customer preferences, purchase history, and baseline diet quality improves grocery purchase dietary quality and spending on healthy foods. Design, Setting, and Participants This was a 9-month randomized clinical crossover trial (AB–BA) with a 2- to 4-week washout period between 3-month intervention periods. Participants included 224 loyalty program members at an independent Rhode Island supermarket who completed baseline questionnaires and were randomized from July to September 2018 to group 1 (AB) or group 2 (BA). Data analysis was performed from September 2019 to May 2020. Intervention Participants received personalized weekly coupons with nutrition education during the intervention period (A) and occasional generic coupons with nutrition education during the control period (B). An automated study algorithm used customer data to allocate personalized healthy food incentives to participant loyalty cards. All participants received a 5% grocery discount. Main Outcomes and Measures Grocery Purchase Quality Index–2016 (GPQI-16) scores (range, 0-75, with higher scores denoting healthier purchases) and percentage spending on targeted foods were calculated from cumulative purchasing data. Participants in the top and bottom 1% of spending were excluded. Paired t tests examined between-group differences. Results The analytical sample included 209 participants (104 in group 1 and 105 in group 2), with a mean (SD) age of 55.4 (14.0) years. They were predominantly non-Hispanic White (193 of 206 participants [94.1%]) and female (187 of 207 participants [90.3%]). Of 161 participants with income data, 81 (50.3%) had annual household incomes greater than or equal to $100 000. Paired t tests showed that the intervention increased GPQI-16 scores (between-group difference, 1.06; 95% CI, 0.27-1.86; P = .01) and percentage spending on targeted foods (between-group difference, 1.38%; 95% CI, 0.08%-2.69%; P = .04). During the initial intervention period, group 1 (AB) and group 2 (BA) had similar mean (SD) GPQI-16 scores (41.2 [6.6] vs 41.0 [7.5]) and mean (SD) percentage spending on targeted healthy foods (32.0% [10.8%] vs 31.0% [10.5%]). During the crossover intervention period, group 2 had a higher mean (SD) GPQI-16 score than group 1 (42.9 [7.7] vs 41.0 [6.8]) and mean (SD) percentage spending on targeted foods (34.0% [12.1%] vs 32.0% [13.1%]). Conclusions and Relevance This pilot trial demonstrated preliminary evidence for the effectiveness of a novel personalized healthy food incentive algorithm to improve grocery purchase dietary quality. Trial Registration ClinicalTrials.gov Identifier: NCT0374805

    Extreme deuterium enrichment in stratospheric hydrogen and the global atmospheric budget of H_2

    Get PDF
    Molecular hydrogen (H_2) is the second most abundant trace gas in the atmosphere after methane (CH_4). In the troposphere, the D/H ratio of H_2 is enriched by 120‰ relative to the world's oceans. This cannot be explained by the sources of H_2 for which the D/H ratio has been measured to date (for example, fossil fuels and biomass burning). But the isotopic composition of H_2 from its single largest source—the photochemical oxidation of methane—has yet to be determined. Here we show that the D/H ratio of stratospheric H2 develops enrichments greater than 440‰, the most extreme D/H enrichment observed in a terrestrial material. We estimate the D/H ratio of H_2 produced from CH_4 in the stratosphere, where production is isolated from the influences of non-photochemical sources and sinks, showing that the chain of reactions producing H_2 from CH_4 concentrates D in the product H_2. This enrichment, which we estimate is similar on a global average in the troposphere, contributes substantially to the D/H ratio of tropospheric H_2

    Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    Full text link
    Global scientific collaborations, such as ATLAS, continue to push the network requirements envelope. Data movement in this collaboration is routinely including the regular exchange of petabytes of datasets between the collection and analysis facilities in the coming years. These requirements place a high emphasis on networks functioning at peak efficiency and availability; the lack thereof could mean critical delays in the overall scientific progress of distributed data-intensive experiments like ATLAS. Network operations staff routinely must deal with problems deep in the infrastructure; this may be as benign as replacing a failing piece of equipment, or as complex as dealing with a multi-domain path that is experiencing data loss. In either case, it is crucial that effective monitoring and performance analysis tools are available to ease the burden of management. We will report on our experiences deploying and using the perfSONAR-PS Performance Toolkit at ATLAS sites in the United States. This software creates a dedicated monitoring server, capable of collecting and performing a wide range of passive and active network measurements. Each independent instance is managed locally, but able to federate on a global scale; enabling a full view of the network infrastructure that spans domain boundaries. This information, available through web service interfaces, can easily be retrieved to create customized applications. The US ATLAS collaboration has developed a centralized ñ€ơÄÃÂșdashboardñ€ơÄÃÂč offering network administrators, users, and decision makers the ability to see the performance of the network at a glance. The dashboard framework includes the ability to notify users (alarm) when problems are found, thus allowing rapid response to potential problems and making perfSONAR-PS crucial to the operation of our distributed computing infrastructure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98635/1/1742-6596_396_4_042038.pd

    Recent Trends in Stratospheric Chlorine From Very Short‐Lived Substances

    Get PDF
    Very short‐lived substances (VSLS), including dichloromethane (CH2Cl2), chloroform (CHCl3), perchloroethylene (C2Cl4), and 1,2‐dichloroethane (C2H4Cl2), are a stratospheric chlorine source and therefore contribute to ozone depletion. We quantify stratospheric chlorine trends from these VSLS (VSLCltot) using a chemical transport model and atmospheric measurements, including novel high‐altitude aircraft data from the NASA VIRGAS (2015) and POSIDON (2016) missions. We estimate VSLCltot increased from 69 (±14) parts per trillion (ppt) Cl in 2000 to 111 (±22) ppt Cl in 2017, with \u3e80% delivered to the stratosphere through source gas injection, and the remainder from product gases. The modeled evolution of chlorine source gas injection agrees well with historical aircraft data, which corroborate reported surface CH2Cl2 increases since the mid‐2000s. The relative contribution of VSLS to total stratospheric chlorine increased from ~2% in 2000 to ~3.4% in 2017, reflecting both VSLS growth and decreases in long‐lived halocarbons. We derive a mean VSLCltot growth rate of 3.8 (±0.3) ppt Cl/year between 2004 and 2017, though year‐to‐year growth rates are variable and were small or negative in the period 2015–2017. Whether this is a transient effect, or longer‐term stabilization, requires monitoring. In the upper stratosphere, the modeled rate of HCl decline (2004–2017) is −5.2% per decade with VSLS included, in good agreement to ACE satellite data (−4.8% per decade), and 15% slower than a model simulation without VSLS. Thus, VSLS have offset a portion of stratospheric chlorine reductions since the mid‐2000s

    Inverse modelling of carbonyl sulfide: implementation, evaluation and implications for the global budget

    Get PDF
    Carbonyl sulfide (COS) has the potential to be used as a climate diagnostic due to its close coupling to the biospheric uptake of CO2 and its role in the formation of stratospheric aerosol. The current understanding of the COS budget, however, lacks COS sources, which have previously been allocated to the tropical ocean. This paper presents a first attempt at global inverse modelling of COS within the 4-dimensional variational data-assimilation system of the TM5 chemistry transport model (TM5-4DVAR) and a comparison of the results with various COS observations. We focus on the global COS budget, including COS production from its precursors carbon disulfide (CS2) and dimethyl sulfide (DMS). To this end, we implemented COS uptake by soil and vegetation from an updated biosphere model (Simple Biosphere Model-SiB4). In the calculation of these fluxes, a fixed atmospheric mole fraction of 500 pmol mol-1 was assumed. We also used new inventories for anthropogenic and biomass burning emissions. The model framework is capable of closing the COS budget by optimizing for missing emissions using NOAA observations in the period 2000-2012. The addition of 432 Gg a-1 (as S equivalents) of COS is required to obtain a good fit with NOAA observations. This missing source shows few year-to-year variations but considerable seasonal variations. We found that the missing sources are likely located in the tropical regions, and an overestimated biospheric sink in the tropics cannot be ruled out due to missing observations in the tropical continental boundary layer. Moreover, high latitudes in the Northern Hemisphere require extra COS uptake or reduced emissions. HIPPO (HIAPER Pole-to-Pole Observations) aircraft observations, NOAA airborne profiles from an ongoing monitoring programme and several satellite data sources are used to evaluate the optimized model results. This evaluation indicates that COS mole fractions in the free troposphere remain underestimated after optimization. Assimilation of HIPPO observations slightly improves this model bias, which implies that additional observations are urgently required to constrain sources and sinks of COS. We finally find that the biosphere flux dependency on the surface COS mole fraction (which was not accounted for in this study) may substantially lower the fluxes of the SiB4 biosphere model over strong-uptake regions. Using COS mole fractions from our inversion, the prior biosphere flux reduces from 1053 to 851 Gg a-1, which is closer to 738 Gg a-1 as was found by Berry et al. (2013). In planned further studies we will implement this biosphere dependency and additionally assimilate satellite data with the aim of better separating the role of the oceans and the biosphere in the global COS budget..</p

    Transport of short-lived halocarbons to the stratosphere over the Pacific Ocean

    Get PDF
    The effectiveness of transport of short-lived halocarbons to the upper troposphere and lower stratosphere remains an important uncertainty in quantifying the supply of ozone-depleting substances to the stratosphere. In early 2014, a major field campaign in Guam in the western Pacific, involving UK and US research aircraft, sampled the tropical troposphere and lower stratosphere. The resulting measurements of CH3I, CHBr3 and CH2Br2 are compared here with calculations from a Lagrangian model. This methodology benefits from an updated convection scheme that improves simulation of the effect of deep convective motions on particle distribution within the tropical troposphere. We find that the observed CH3I, CHBr3 and CH2Br2 mixing ratios in the tropical tropopause layer (TTL) are consistent with those in the boundary layer when the new convection scheme is used to account for convective transport. More specifically, comparisons between modelled estimates and observations of short-lived CH3I indicate that the updated convection scheme is realistic up to the lower TTL but is less good at reproducing the small number of extreme convective events in the upper TTL. This study consolidates our understanding of the transport of short-lived halocarbons to the upper troposphere and lower stratosphere by using improved model calculations to confirm consistency between observations in the boundary layer, observations in the TTL and atmospheric transport processes. Our results support recent estimates of the contribution of short-lived bromocarbons to the stratospheric bromine budget

    Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions

    Get PDF
    HCFC-22 (CHClF[subscript 2]) and HFC-134a (CH[subscript 2]FCF[subscript 3]) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion, and both species are potent greenhouse gases. In this work, we study in situ observations of HCFC-22 and HFC-134a taken from research aircraft over the Pacific Ocean in a 3-y span [HIaper-Pole-to-Pole Observations (HIPPO) 2009–2011] and combine these data with long-term ground observations from global surface sites [National Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks]. We find the global annual emissions of HCFC-22 and HFC-134a have increased substantially over the past two decades. Emissions of HFC-134a are consistently higher compared with the United Nations Framework Convention on Climate Change (UNFCCC) inventory since 2000, by 60% more in recent years (2009–2012). Apart from these decadal emission constraints, we also quantify recent seasonal emission patterns showing that summertime emissions of HCFC-22 and HFC-134a are two to three times higher than wintertime emissions. This unforeseen large seasonal variation indicates that unaccounted mechanisms controlling refrigerant gas emissions are missing in the existing inventory estimates. Possible mechanisms enhancing refrigerant losses in summer are (i) higher vapor pressure in the sealed compartment of the system at summer high temperatures and (ii) more frequent use and service of refrigerators and air conditioners in summer months. Our results suggest that engineering (e.g., better temperature/vibration-resistant system sealing and new system design of more compact/efficient components) and regulatory (e.g., reinforcing system service regulations) steps to improve containment of these gases from working devices could effectively reduce their release to the atmosphere

    Simplified Models for LHC New Physics Searches

    Get PDF
    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ~50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results from "Topologies for Early LHC Searches" workshop (SLAC, September 2010). Supplementary material can be found at http://lhcnewphysics.or
    • 

    corecore