267 research outputs found

    The 12-year prevalence and trends of childhood disabilities in Australia: Findings from the Survey of Disability, Aging and Carers

    Get PDF
    Aim: This paper contributes to knowledge on the prevalence and nature of disabilities in Australian children over a 12‐year period (2003–2015). Understanding the current state of childhood disability is imperative for predicting future needs for long‐term care and early intervention services for this population. Methods: We used data on children 0–14 years from the 2003, 2009, 2012, and 2015 survey of Disability, Aging and Carers, which is an ongoing national survey covering both rural and urban areas of all States and Territories of Australia. Results: Using the test for trends in population, no significant increases were noted in the prevalence of childhood disabilities over the last 12 years, although the prevalence of any developmental disability increased from 6.9% to 7.42% between 2009 and 2015. The rate and severity of disability was higher among boys compared with girls of the same age for a number of selected disabilities and higher for children aged 5–14 years. Conclusions: With the anticipated rise in psychological related disability among Australian children, there is a need to ensure availability of a flexible and responsive model of service delivery for this population. This also implies that respite service coverage may need to be substantially increased to meet children and caregivers\u27 needs

    Induction of Toll-Like Receptor 3-Mediated Immunity during Gestation Inhibits Cortical Neurogenesis and Causes Behavioral Disturbances

    Get PDF
    Maternal infection during pregnancy with a wide range of RNA and DNA viruses is associated with increased risk for schizophrenia and autism in their offspring. A common feature in these exposures is that virus replication induces innate immunity through interaction with Toll-like receptors (TLRs). We employed a mouse model wherein pregnant mice were exposed to polyinosinic-polycytidylic acid [poly(I  ⋅  C)], a synthetic, double-stranded RNA molecular mimic of replicating virus. Poly(I ⋅ C) inhibited embryonic neuronal stem cell replication and population of the superficial layers of the neocortex by neurons. Poly(I ⋅ C) also led to impaired neonatal locomotor development and abnormal sensorimotor gating responses in adult offspring. Using Toll-like receptor 3 (TLR3)-deficient mice, we established that these effects were dependent on TLR3. Inhibition of stem cell proliferation was also abrogated by pretreatment with the nonsteroidal anti-inflammatory drug (NSAID) carprofen, a cyclooxygenase (COX) inhibitor. Our findings provide insights into mechanisms by which maternal infection can induce subtle neuropathology and behavioral dysfunction, and they may suggest strategies for reducing the risk of neuropsychiatric disorders subsequent to prenatal exposures to pathogens and other triggers of innate immunity

    Effects of maternal immune activation on gene expression patterns in the fetal brain

    Get PDF
    We are exploring the mechanisms underlying how maternal infection increases the risk for schizophrenia and autism in the offspring. Several mouse models of maternal immune activation (MIA) were used to examine the immediate effects of MIA induced by influenza virus, poly(I:C) and interleukin IL-6 on the fetal brain transcriptome. Our results indicate that all three MIA treatments lead to strong and common gene expression changes in the embryonic brain. Most notably, there is an acute and transient upregulation of the α, β and γ crystallin gene family. Furthermore, levels of crystallin gene expression are correlated with the severity of MIA as assessed by placental weight. The overall gene expression changes suggest that the response to MIA is a neuroprotective attempt by the developing brain to counteract environmental stress, but at a cost of disrupting typical neuronal differentiation and axonal growth. We propose that this cascade of events might parallel the mechanisms by which environmental insults contribute to the risk of neurodevelopmental disorders such as schizophrenia and autism

    Autoimmune disease in mothers with the FMR1 premutation is associated with seizures in their children with fragile X syndrome

    Get PDF
    An increased prevalence of autoimmune diseases in family members of children with autism spectrum disorders (ASD) has been previously reported. ASD is also a common problem co-occurring in children with fragile X syndrome (FXS). Why ASD occurs in some individuals with FXS, but not all, is largely unknown. Furthermore, in premutation carrier mothers, there is an increased risk for autoimmune diseases. This study compared the rate of ASD and other neurodevelopmental/behavioral problems in 61 children with FXS born to 41 carrier mothers who had autoimmune disease and in 97 children with FXS of 78 carrier mothers who did not have autoimmune disease. There were no significant differences in the mean age (9.61 ± 5.59 vs. 9.41 ± 6.31, P = 0.836), cognitive and adaptive functioning in children of mothers with and without autoimmune disease. Among children whose mothers had autoimmune disease, the odds ratio (OR) for ASD was 1.27 (95% CI 0.62–2.61, P = 0.5115). Interestingly, the OR for seizures and tics was 3.81 (95% CI 1.13–12.86, P = 0.031) and 2.94 (95% CI 1.19–7.24, P = 0.019), respectively, in children of mothers with autoimmune disease compared to children of mothers without autoimmune disease. In conclusion, autoimmune disease in carrier mothers was not associated with the presence of ASD in their children. However, seizures and tics were significantly increased in children of mothers with autoimmune disease. This suggests a potential new mechanism of seizure and tic exacerbation in FXS related to an intergenerational influence from autoimmunity in the carrier mother

    MRI Study of Minor Physical Anomaly in Childhood Autism Implicates Aberrant Neurodevelopment in Infancy

    Get PDF
    Background: MPAs (minor physical anomalies) frequently occur in neurodevelopmental disorders because both face and brain are derived from neuroectoderm in the first trimester. Conventionally, MPAs are measured by evaluation of external appearance. Using MRI can help overcome inherent observer bias, facilitate multi-centre data acquisition, and explore how MPAs relate to brain dysmorphology in the same individual. Optical MPAs exhibit a tightly synchronized trajectory through fetal, postnatal and adult life. As head size enlarges with age, inter-orbital distance increases, and is mostly completed before age 3 years. We hypothesized that optical MPAs might afford a retrospective 'window' to early neurodevelopment; specifically, inter-orbital distance increase may represent a biomarker for early brain dysmaturation in autism. Methods: We recruited 91 children aged 7-16; 36 with an autism spectrum disorder and 55 age- and gender-matched typically developing controls. All children had normal IQ. Inter-orbital distance was measured on T1-weighted MRI scans. This value was entered into a voxel-by-voxel linear regression analysis with grey matter segmented from a bimodal MRI data-set. Age and total brain tissue volume were entered as covariates. Results: Intra-class coefficient for measurement of the inter-orbital distance was 0.95. Inter-orbital distance was significantly increased in the autism group (p = 0.03, 2-tailed). The autism group showed a significant relationship between inter-orbital distance grey matter volume of bilateral amygdalae extending to the unci and inferior temporal poles. Conclusions: Greater inter-orbital distance in the autism group compared with healthy controls is consistent with infant head size expansion in autism. Inter-orbital distance positively correlated with volume of medial temporal lobe structures, suggesting a link to "social brain" dysmorphology in the autism group. We suggest these data support the role of optical MPAs as a "fossil record" of early aberrant neurodevelopment, and potential biomarker for brain dysmaturation in autism. © 2011 Cheung et al.published_or_final_versio

    FMR1 premutation and full mutation molecular mechanisms related to autism

    Get PDF
    Fragile X syndrome (FXS) is caused by an expanded CGG repeat (>200 repeats) in the 5′ un-translated portion of the fragile X mental retardation 1 gene (FMR1) leading to a deficiency or absence of the FMR1 protein (FMRP). FMRP is an RNA-binding protein that regulates the translation of a number of other genes that are important for synaptic development and plasticity. Furthermore, many of these genes, when mutated, have been linked to autism in the general population, which may explain the high comorbidity that exists between FXS and autism spectrum disorders (ASD). Additionally, premutation repeat expansions (55 to 200 CGG repeats) may also give rise to ASD through a different molecular mechanism that involves a direct toxic effect of FMR1 mRNA. It is believed that RNA toxicity underlies much of the premutation-related involvement, including developmental concerns like autism, as well as neurodegenerative issues with aging such as the fragile X-associated tremor ataxia syndrome (FXTAS). RNA toxicity can also lead to mitochondrial dysfunction, which is common in older premutation carriers both with and without FXTAS. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in idiopathic autism. Research regarding dysregulation of neurotransmitter systems caused by the lack of FMRP in FXS, including metabotropic glutamate receptor 1/5 (mGluR1/5) pathway and GABA pathways, has led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism
    corecore