973 research outputs found

    The influence of regional culture on post-sixteen educational choices and directions from school in Lincolnshire: a qualitative study

    Get PDF
    This thesis investigates the influence of regional culture on young people's decision making when considering post-sixteen educational choices and directions from school. The data is provided by life story interviews with young people - aged eighteen to twenty years, 'born and bred' in Lincolnshire - who have followed four pathways from compulsory education. Within the context of Lincolnshire the influence of rurality is a major element of regional culture and figures in much of the discussion and analysis. The work of Pierre Bourdieu in defining culture through field and habitus is used as a theoretical perspective in the data analysis and conclusions. The research highlights the continued importance of family and community habitus in the decision-making processes of young people. The interviews are used to consider the relative field positions important in defining individuals' post-sixteen pathways. The nature of rurality as a social construct rather than simply a reflection of physical geography is discussed and conclusions offered as to its possible effect on preferred post-sixteen pathways. The relative importance given to physical and social characteristics of rurality is used to construct a series of cultural indicators for rural communities. The data would support the conclusion that new initiatives designed to increase participation rates in post-sixteen education are having some effect, but only among those young people predisposed through family habitus to continuing education. Those young people whose family habitus most closely coincides with pedagogic authority are most likely to operate comfortably within the educational habitus and hence continue with formal education beyond sixteen. The thesis suggests the real differences in habitus between urban and rural communities requires a shift in the policy debate if rural people are to participate fully in the notion of lifelong learning. NB. This ethesis has been created by scanning the typescript original and contains some inaccuracies. In case of difficulty, please refer to the original text

    The influence of regional culture on post-sixteen educational choices and directions from school in Lincolnshire: a qualitative study

    Get PDF
    This thesis investigates the influence of regional culture on young people's decision making when considering post-sixteen educational choices and directions from school. The data is provided by life story interviews with young people - aged eighteen to twenty years, 'born and bred' in Lincolnshire - who have followed four pathways from compulsory education. Within the context of Lincolnshire the influence of rurality is a major element of regional culture and figures in much of the discussion and analysis. The work of Pierre Bourdieu in defining culture through field and habitus is used as a theoretical perspective in the data analysis and conclusions. The research highlights the continued importance of family and community habitus in the decision-making processes of young people. The interviews are used to consider the relative field positions important in defining individuals' post-sixteen pathways. The nature of rurality as a social construct rather than simply a reflection of physical geography is discussed and conclusions offered as to its possible effect on preferred post-sixteen pathways. The relative importance given to physical and social characteristics of rurality is used to construct a series of cultural indicators for rural communities. The data would support the conclusion that new initiatives designed to increase participation rates in post-sixteen education are having some effect, but only among those young people predisposed through family habitus to continuing education. Those young people whose family habitus most closely coincides with pedagogic authority are most likely to operate comfortably within the educational habitus and hence continue with formal education beyond sixteen. The thesis suggests the real differences in habitus between urban and rural communities requires a shift in the policy debate if rural people are to participate fully in the notion of lifelong learning. NB. This ethesis has been created by scanning the typescript original and contains some inaccuracies. In case of difficulty, please refer to the original text

    Probabilistic Airline Reserve Crew Scheduling Model

    Get PDF
    This paper introduces a probabilistic model for airline reserve crew scheduling. The model can be applied to any schedules which consist of a stream of departures from a single airport. We assume that reserve crew demand can be captured by an independent probability of crew absence for each departure. The aim of our model is to assign some fixed number of available reserve crew in such a way that the overall probability of crew unavailability in an uncertain operating environment is minimised. A comparison of different probabilistic objective functions, in terms of the most desirable simulation results, is carried out, complete with an interpretation of the results. A sample of heuristic solution methods are then tested and compared to the optimal solutions on a set of problem instances, based on the best objective function found. The current model can be applied in the early planning phase of reserve crew scheduling, when very little information is known about crew absence related disruptions. The main conclusions include the finding that the probabilistic objective function approach gives solutions whose objective values correlate strongly with the results that these solutions will get on average in repeated simulations. Minimisation of the sum of the probabilities of crew unavailability was observed to be the best surrogate objective function for reserve crew schedules that perform well in simulation. A list of extensions that could be made to the model is then provided, followed by conclusions that summarise the findings and important results obtained

    A simulation scenario based mixed integer programming approach to airline reserve crew scheduling under uncertainty

    Get PDF
    Airlines operate in an uncertain environment for many reasons, for example due to the efects of weather, traffic or crew unavailability (due to delay or sickness). This work focuses on airline reserve crew scheduling under crew absence and journey time uncertainty for an airline operating a single hub and spoke network. Reserve crew can be used to cover absent crew or delayed connecting crew. A fixed number of reserve crew are available for scheduling and each requires a daily standby duty start time. Given an airline's crew schedule and aircraft routings we propose a Mixed Integer Programming approach to scheduling the airline's reserve crew. A simulation of the airline's operations with stochastic journey time and crew absence inputs and without reserve crew is used to generate disruption scenarios for the MIPSSM formulation (Mixed Integer Programming Simulation Scenario Model). Each disruption scenario corresponds to a record of all of the disruptions in a simulation for which reserve crew use would have been beneficial. For each disruption in a disruption scenario there is a record of all reserve crew that could have been used to solve or reduce the disruption. This information forms the input to the MIPSSM formulation, which has the objective of finding the reserve schedule that minimises the overall level of disruption over a set of scenarios. Additionally, modifications of the MIPSSM are explored, and a heuristic solution approach and a reserve use policy derived from the MIPSSM are introduced. A heuristic based on the proposed Mixed Integer Programming Simulation Scenario Model or MIPSSM outperforms a range of alternative approaches. The heuristic solution approach suggests that including the right disruption scenarios is as important as ensuring that enough disruption scenarios are added to the MIPSSM

    A simulation scenario based mixed integer programming approach to airline reserve crew scheduling under uncertainty

    Get PDF
    Airlines operate in an uncertain environment for many reasons, for example due to the efects of weather, traffic or crew unavailability (due to delay or sickness). This work focuses on airline reserve crew scheduling under crew absence and journey time uncertainty for an airline operating a single hub and spoke network. Reserve crew can be used to cover absent crew or delayed connecting crew. A fixed number of reserve crew are available for scheduling and each requires a daily standby duty start time. Given an airline's crew schedule and aircraft routings we propose a Mixed Integer Programming approach to scheduling the airline's reserve crew. A simulation of the airline's operations with stochastic journey time and crew absence inputs and without reserve crew is used to generate disruption scenarios for the MIPSSM formulation (Mixed Integer Programming Simulation Scenario Model). Each disruption scenario corresponds to a record of all of the disruptions in a simulation for which reserve crew use would have been beneficial. For each disruption in a disruption scenario there is a record of all reserve crew that could have been used to solve or reduce the disruption. This information forms the input to the MIPSSM formulation, which has the objective of finding the reserve schedule that minimises the overall level of disruption over a set of scenarios. Additionally, modifications of the MIPSSM are explored, and a heuristic solution approach and a reserve use policy derived from the MIPSSM are introduced. A heuristic based on the proposed Mixed Integer Programming Simulation Scenario Model or MIPSSM outperforms a range of alternative approaches. The heuristic solution approach suggests that including the right disruption scenarios is as important as ensuring that enough disruption scenarios are added to the MIPSSM

    Scheduling airline reserve crew using a probabilistic crew absence and recovery model

    Get PDF
    Airlines require reserve crew to replace delayed or absent crew, with the aim of preventing consequent flight cancellations. A reserve crew schedule specifies the duty periods for which different reserve crew will be on standby to replace any absent crew. For both legal and health-and-safety reasons the reserve crew's duty period is limited, so it is vital that these reserve crew are available at the right times, when they are most likely to be needed and will be most effective. Scheduling a reserve crew unnecessarily, or earlier than needed, wastes reserve crew capacity. Scheduling a reserve crew too late means either an unrecoverable cancellation or a delay waiting for the reserve crew to be available. Determining when to schedule these crew can be a complex problem , since one crew member could potentially cover a vacancy on any one of a number of different flights, and flights interact with each other, so a delay or cancellation for one flight can affect a number of later flights. This work develops an enhanced mathematical model for assessing the impact of any given reserve crew schedule, in terms of reduced total expected cancellations and any resultant reserve induced delays, whilst taking all of the available information into account, including the schedule structure and interactions between flights, the uncertainties involved, and the potential for multiple crew absences on a single flight. The interactions between flights have traditionally made it very hard to predict the effects of cancellations or delays, and hence to predict when best to allocate reserve crew and lengthy simulation runs have traditionally been used to make these predictions. This work is motivated by the airline industry's need for improved mathematical models to replace the time-consuming simulation-based approaches. The improved predictive probabilistic model which is introduced here is shown to produce results that match a simulation model to a high degree of accuracy, in a much shorter time, making it an effective and accurate surrogate for simulation. The modelling of the problem also provides insights into the complexity of the problem that a purely simulation based approach would miss. The increased speed enables potential deployment within a real time decision support context, comparing alternative recovery decisions as disruptions occur. To illustrate this, the model is used in this paper as a fitness function in meta-heuristics algorithms to generate disruption minimising reserve crew schedules for a real airline schedule. These are shown to be of a high quality, demonstrating the effectiveness and reliability of the proposed approach

    Toward better build volume packing in additive manufacturing: classification of existing problems and benchmarks

    Get PDF
    In many cases, the efficient operation of Additive Manufacturing (AM) technology relies on build volumes being packed effectively. Packing algorithms have been developed in response to this requirement. The configuration of AM build volumes is particularly challenging due to the multitude of irregular geometries encountered and the potential benefits of nesting parts. Currently proposed approaches to address this packing problem are routinely evaluated on data sets featuring shapes that are not representative of targeted manufacturing products. This study provides a useful classification of AM build volume packing problems and an overview of existing benchmarks for the analysis of such problems. Additionally, this paper discusses characteristics of future, more realistic, benchmarks with the intention of promoting research toward effective and efficient AM build volume packing being integrated into AM production planning methodologies

    Impact Response of Curved Composite Laminates: Effect of Radius and Thickness

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-06-03, accepted 2020-07-13, registration 2020-07-13, pub-electronic 2020-07-25, online 2020-07-25, pub-print 2020-10Publication status: PublishedFunder: University of ManchesterAbstract: This paper presents the results of drop-weight impact testing (5 J to 30 J) on curved ±55° E-glass-epoxy laminates of varying radii and wall thickness. Three radii (75 mm, 100 mm, and 125 mm) on laminates with an effective wall thickness of 2.5 mm, and three wall thicknesses (2.5 mm, 4.1 mm, and 6.6 mm) with a radius of 100 mm were investigated. The damage pattern remained consistent, with the exception of the damage area, across the tested energies and was dominated by internal matrix cracking and multiple delaminations. However, no damage was recorded following a 5 J impact on the 2.5 mm thick laminates with 100 mm and 125 mm radii, all energy was absorbed elastically, while the laminate with a 75 mm radius of curvature developed a damage area of over 80 mm2. The thicker laminates showed a reduced overall damage area but a greater number of delaminations. The relationship between laminate thickness and delamination threshold load was found to be in line with impact testing of flat plates, varying with the laminate thickness to the 3/2 power. However, the simplified beam theory and a fracture mechanics model developed for the prediction of delamination threshold of flat plates was found to underestimate the delamination threshold load (DTL) of the curved laminates studied by about 40%. An increase in the laminate’s flexural modulus of a factor of two is required to bring the model’s predictions in line with the DTL values measured experimentally, highlighting how curvature can enhance bending stiffness and alter damage evolution. Finally, a significant finding is that the DTL of the curved plates is around 15% lower than the value measured for the whole cylindrical pipe of same specifications. Testing curved sections rather than a whole pipe could reduce effort, but further work is required to confirm this statement

    Toward better build volume packing in additive manufacturing: classification of existing problems and benchmarks

    Get PDF
    In many cases, the efficient operation of Additive Manufacturing (AM) technology relies on build volumes being packed effectively. Packing algorithms have been developed in response to this requirement. The configuration of AM build volumes is particularly challenging due to the multitude of irregular geometries encountered and the potential benefits of nesting parts. Currently proposed approaches to address this packing problem are routinely evaluated on data sets featuring shapes that are not representative of targeted manufacturing products. This study provides a useful classification of AM build volume packing problems and an overview of existing benchmarks for the analysis of such problems. Additionally, this paper discusses characteristics of future, more realistic, benchmarks with the intention of promoting research toward effective and efficient AM build volume packing being integrated into AM production planning methodologies
    • …
    corecore