55 research outputs found

    Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean

    Get PDF
    Greenhouse experiments were conducted to study the effects of glyphosate drift on plant growth and concentrations of mineral nutrients in leaves and seeds of non-glyphosate resistant soybean plants (Glycine max, L.). Glyphosate was sprayed on plant shoots at increasing rates between 0.06 and 1.2% of the recommended application rate forweed control. In an experiment with 3-week-old plants, increasing application of glyphosate on shoots significantly reduced chlorophyll concentration of the young leaves and shoots dry weight, particularly the young parts of plants. Concentration of shikimate due to increasing glyphosate rates was nearly 2-fold for older leaves and 16-fold for younger leaves compared to the control plants without glyphosate spray. Among the mineral nutrients analyzed, the leaf concentrations of potassium (K), phosphorus (P), copper (Cu) and zinc (Zn) were not affected, or even increased significantly in case of P and Cu in young leaves by glyphosate, while the concentrations of calcium (Ca), manganese (Mn) and magnesium (Mg) were reduced, particularly in young leaves. In the case of Fe, leaf concentrations showed a tendency to be reduced by glyphosate. In the second experiment harvested at the grain maturation, glyphosate application did not reduce the seed concentrations of nitrogen (N), K, P, Zn and Cu. Even, at the highest application rate of glyphosate, seed concentrations of N, K, Zn and Cuwere increased by glyphosate. By contrast, the seed concentrations of Ca, Mg, Fe and Mn were significantly reduced by glyphosate. These results suggested that glyphosatemay interfere with uptake and retranslocation of Ca, Mg, Fe and Mn, most probably by binding and thus immobilizing them. The decreases in seed concentration of Fe, Mn, Ca and Mg by glyphosate are very specific, and may affect seed quality

    Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes

    Get PDF
    Micronutrient malnutrition, and particularly deficiency in zinc (Zn) and iron (Fe), afflicts over three billion people worldwide, and nearly half of the world’s cereal-growing area is affected by soil Zn deficiency. Wild emmer wheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell.], the progenitor of domesticated durum wheat and bread wheat, offers a valuable source of economically important genetic diversity including grain mineral concentrations. Twenty two wild emmer wheat accessions, representing a wide range of drought resistance capacity, as well as two durum wheat cultivars were examined under two contrasting irrigation regimes (well-watered control and water-limited), for grain yield, total biomass production and grain Zn, Fe and protein concentrations. The wild emmer accessions exhibited high genetic diversity for yield and grain Zn, Fe and protein concentrations under both irrigation regimes, with a considerable potential for improvement of the cultivated wheat. Grain Zn, Fe and protein concentrations were positively correlated with one another. Although irrigation regime significantly affected ranking of genotypes, a few wild emmer accessions were identified for their advantage over durum wheat, having consistently higher grain Zn (e.g., 125 mg kg−1), Fe (85 mg kg−1) and protein (250 g kg−1) concentrations and high yield capacity. Plants grown from seeds originated from both irrigation regimes were also examined for Zn efficiency (Zn deficiency tolerance) on a Zn-deficient calcareous soil. Zinc efficiency, expressed as the ratio of shoot dry matter production under Zn deficiency to Zn fertilization, showed large genetic variation among the genotypes tested. The source of seeds from maternal plants grown under both irrigation regimes had very little effect on Zn efficiency. Several wild emmer accessions revealed combination of high Zn efficiency and drought stress resistance. The results indicate high genetic potential of wild emmer wheat to improve grain Zn, Fe and protein concentrations, Zn deficiency tolerance and drought resistance in cultivated wheat

    Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (helianthus annuus L.) plants

    Get PDF
    Evidence clearly shows that cationic micronutrients in spray solutions reduce the herbicidal effectiveness of glyphosate for weed control due to the formation of metal-glyphosate complexes. The formation of these glyphosate-metal complexes in plant tissue may also impair micronutrient nutrition of nontarget plants when exposed to glyphosate drift or glyphosate residues in soil. In the present study, the effects of simulated glyphosate drift on plant growth and uptake, translocation, and accumulation (tissue concentration) of iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were investigated in sunflower ( Helianthus annuusL.) plants grown in nutrient solution under controlled environmental conditions. Glyphosate was sprayed on plant shoots at different rates between 1.25 and 6.0% of the recommended dosage (i.e., 0.39 and 1.89 mM glyphosate isopropylamine salt). Glyphosate applications significantly decreased root and shoot dry matter production and chlorophyll concentrations of young leaves and shoot tips. The basal parts of the youngest leaves and shoot tips were severely chlorotic. These effects became apparent within 48 h after the glyphosate spray. Glyphosate also caused substantial decreases in leaf concentration of Fe and Mn while the concentration of Zn and Cu was less affected. In short-term uptake experiments with radiolabeled Fe (59Fe), Mn (54Mn), and Zn (65Zn), root uptake of 59Fe and 54Mn was significantly reduced in 12 and 24 h after application of 6% of the recommended dosage of glyphosate, respectively. Glyphosate resulted in almost complete inhibition of root-to-shoot translocation of 59Fe within 12 h and 54Mn within 24 h after application. These results suggest that glyphosate residues or drift may result in severe impairments in Fe and Mn nutrition of nontarget plants, possibly due to the formation of poorly soluble glyphosate-metal complexes in plant tissues and/or rhizosphere interactions

    Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots

    Get PDF
    Iron (Fe) deficiency is increasingly being observed in cropping systems with frequent glyphosate applications. A likely reason for this is that glyphosate interferes with root uptake of Fe by inhibiting ferric reductase in roots required for Fe acquisition by dicot and nongrass species. This study investigated the role of drift rates of glyphosate (0.32, 0.95 or 1.89 mM glyphosate corresponding to 1, 3 and 6% of the recommended herbicidal dose, respectively) on ferric reductase activity of sunflower (Helianthus annuus) roots grown under Fe deficiency conditions. Application of 1.89 mM glyphosate resulted in almost 50% inhibition of ferric reductase within 6 h and complete inhibition 24 h after the treatment. Even at lower rates of glyphosate (e.g. 0.32 mM and 0.95 mM), ferric reductase was inhibited. Soluble sugar concentration and the NAD(P)H oxidizing capacity of apical roots were not decreased by the glyphosate applications. To our knowledge, this is the first study reporting the effects of glyphosate on ferric reductase activity. The nature of the inhibitory effect of glyphosate on ferric reductase could not be identified. Impaired ferric reductase could be a major reason for the increasingly observed Fe deficiency in cropping systems associated with widespread glyphosate usage

    Statistical Methods and Artificial Neural Networks

    Get PDF
    Artificial Neural Networks and statistical methods are applied on real data sets for forecasting, classification, and clustering problems. Hybrid models for two components are examined on different data sets; tourist arrival forecasting to Turkey, macro-economic problem on rescheduling of the countries’ international debts, and grouping twenty-five European Union member and four candidate countries according to macro-economic indicators

    Biofortification of Diverse Basmati Rice Cultivars with Iodine, Selenium, and Zinc by Individual and Cocktail Spray of Micronutrients

    Get PDF
    Given that an effective combined foliar application of iodine (I), selenium (Se), and zinc (Zn) would be farmer friendly, compared to a separate spray of each micronutrient, for the simultaneous biofortification of grain crops, we compared effectiveness of foliar-applied potassium iodate (KIO3, 0.05%), sodium selenate (Na2SeO4, 0.0024%), and zinc sulfate (ZnSO4∙7H2O, 0.5%), separately and in their combination (as cocktail) for the micronutrient biofortification of four Basmati cultivars of rice (Oryza sativa L.). Foliar-applied, each micronutrient or their cocktail did not affect rice grain yield, but grain yield varied significantly among rice cultivars. Irrespective of foliar treatments, the brown rice of cv. Super Basmati and cv. Kisan Basmati had substantially higher concentration of micronutrients than cv. Basmati-515 and cv. Chenab Basmati. With foliar-applied KIO3, alone or in cocktail, the I concentration in brown rice increased from 12 to 186 µg kg−1. The average I concentration in brown rice with foliar-applied KIO3 or cocktail was 126 μg kg−1 in cv. Basmati-515, 160 μg kg−1 in cv. Chenab Basmati, 153 μg kg−1 in cv. Kisan Basmati, and 306 μg kg−1 in cv. Super Basmati. Selenium concentration in brown rice increased from 54 to 760 µg kg−1, with foliar-applied Na2SeO4 individually and in cocktail, respectively. The inherent Zn concentration in rice cultivars ranged between 14 and 19 mg kg−1 and increased by 5–6 mg Zn per kg grains by foliar application of ZnSO4∙7H2O and cocktail. The results also showed the existence of genotypic variation in response to foliar spray of micronutrients and demonstrated that a foliar-applied cocktail of I, Se, and Zn could be an effective strategy for the simultaneous biofortification of rice grains with these micronutrients to address the hidden hunger problem in human population

    Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat 3 wild emmer wheat RIL population

    Get PDF
    Mineral nutrient malnutrition, and particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, genepool harbors a rich allelic repertoire for mineral nutrients in the grain. The genetic and physiological basis of grain protein, micronutrients (zinc, iron, copper and manganese) and macronutrients (calcium, magnesium, potassium, phosphorus and sulfur) concentration was studied in tetraploid wheat population of 152 recombinant inbred lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Wide genetic variation was found among the RILs for all grain minerals, with considerable transgressive effect. A total of 82 QTLs were mapped for 10 minerals with LOD score range of 3.2–16.7. Most QTLs were in favor of the wild allele (50 QTLs). Fourteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. Significant positive correlation was found between grain protein concentration (GPC), Zn, Fe and Cu, which was supported by significant overlap between the respective QTLs, suggesting common physiological and/or genetic factors controlling the concentrations of these mineral nutrients. Few genomic regions (chromosomes 2A, 5A, 6B and 7A) were found to harbor clusters of QTLs for GPC and other nutrients. These identified QTLs may facilitate the use of wild alleles for improving grain nutritional quality of elite wheat cultivars, especially in terms of protein, Zn and Fe

    Where we are in the Fight against Hepatitis B Infection; Trends in Hepatitis B Virus Seroprevalence in Black Sea Region of Turkey

    Get PDF
    Context: To determine new strategies for complete coverage of hepatitis B virus (HBV) vaccination, every country needs to take into concern factors of infection transmission in its own region. Aims: The aim of this study was to investigate the seroprevalence of hepatitis B among all age groups in northern Turkey using HBsAg and anti-HBs serological markers. Materials and Methods: The laboratory records of a total of 101648 patients of all ages attending a tertiary level hospital in Samsun, a Black Sea coastal city, between January 2014 and May 2016 were evaluated retrospectively. Results: HBsAg and anti-HBs seropositivity was found to be 4% and 38.3%, respectively. There was a significant difference between HBsAg (χ2 = 209.08; P = 0.00), anti-HBs (χ2 = 124.12; P = 0.00) seropositivity, and immunization status. Although we found a statically difference between men and women (χ2 = 32.2 P = 0.00) for HBsAg seropositivity, there was no significant difference for anti-HBs (P = 0.22). In 1998, the universal infant immunization program changed the HBV epidemiology in Turkey, and resulted in an apparent trend towards reduced disease levels. However, prevalence of HBV infection is still high in adolescent and young adults. Conclusions: Therefore, a catch-up immunization program, education, and follow-up policy for these groups, in addition to routine infant immunization, will decrease the HBV infection rate, reducing morbidity and mortality rates, and will help to reduce hepatitis B transmission in Turkey.Key Messages: A catch-up immunization program, education, and follow-up policy for adolescents and young adult groups could help reduce hepatitis B transmission in many countries.Keywords: Hepatitits B, seroepidemiologic studies, Turke

    Effects of potassium, magnesium, and sulphur containing fertilizers on yield and quality of sugar beets (Beta vulgaris L.)

    No full text
    Effects of potassium (K), magnesium (Mg), and sulphur (S) containing fertilizers on root yield, refined sugar yield, and K, Mg, and S concentrations of leaf of sugar beet (Beta vulgaris L.) were studied on 3 different locations in Konya province, namely Kuzucu, Karaarslan, and Alakova, in 2004, 2005, and 2006. In the trails, a uniform diammonium phosphate (DAP) + urea application was used as the control treatment, while potassium sulphate and Mg containing Kalimagnesia, were applied at varying rate combinations. Compared to the control treatment (DAP + urea), all fertilizer treatments containing K, Mg, and S increased root yield in the Kuzucu and Alakova locations, while in the Karararslan location only potassium sulphate treatment improved root yield. The Kalimagnesia fertilizer containing all 3 nutrients, namely K, Mg, and S, enhanced root yield by 42% and 39% in the Kuzucu and Alakova locations, respectively. But, this yield-stimulating effect of the Kalimagnesia fertilizer was rate-dependent. Kalimagnesia was also effective in improving the sugar content of the root, while the amino-N levels were not consistently affected by the fertilizer treatments. Despite increases in the leaf concentrations of K, Mg, and S by the tested fertilizers, the changes in the leaf concentrations of these nutrients could not fully explain the increases in root yields. In the discussion of the results, the possible role of basic cation saturation ratios of soils was also taken into consideration. The results indicate that a fertilizer treatment including 81 kg K2O ha(-1), 27 kg Mg ha(-1), and 46 kg S ha(-1) may be recommendable in fertilization of sugar beets, together with regular nitrogen and phosphorus applications, under similar conditions, in order to achieve a balanced mineral nutrition and sustain better root and sugar yields

    Genotypic variation in tolerance to boron toxicity in 70 durum wheat genotypes

    No full text
    By using 70 durum wheat (Triticum durum) genotypes, a greenhouse experiment has been carried out to study genotypic variation in tolerance to boron (B) toxicity in soil. Plants were grown in a soil containing 12 mg extractable B kg-1 soil and treated additionally with (+B: 25 mg kg-1 soil) and without B (-B: 0 mg B kg-1 soil). Following 30 days of growth, only shoots have been harvested and analyzed for dry matter production and shoot concentrations of B. There was a large genotypic variation in tolerance to B toxicity based on the severity of leaf symptoms and decreases in dry matter production caused by B toxicity. Among the genotypes tested, the growth of the genotypes Sabil-1, Stn ÒSÓ, Aconhi-89 and Wadelmez-2 was not affected; even, there was a tendency for an increase in growth by B treatment. By contrast, the dry matter production of all other genotypes was markedly decreased by the applied B, particularly in the genotypes Lagost-3, Dicle-74, Brachoua/134xS-61 and Gerbrach. In case of the genotypes Brachoua/134xS-61 and Gerbrach, B application reduced dry weight of the plants by 2-fold. Interestingly, there was no relationship between shoot B concentrations and relative decreases in shoot dry weight by B toxicity. The most B-sensitive genotypes had generally much lower amount of B in shoot than the genotypes showing higher tolerance to B toxicity. This result indicates that the B-exclusion mechanism is not involved in differential expression of B tolerance within 70 durum wheat genotypes. It seems very likely that the internal mechanisms (e.g., adsorption to cell walls and compartementation of B in vacuoles) could be a more plausible explanation for B tolerance in the durum wheats tested in the present study
    corecore