9 research outputs found

    Advances in exosome therapies in ophthalmology–From bench to clinical trial

    Get PDF
    During the last decade, the fields of advanced and personalized therapeutics have been constantly evolving, utilizing novel techniques such as gene editing and RNA therapeutic approaches. However, the method of delivery and tissue specificity remain the main hurdles of these approaches. Exosomes are natural carriers of functional small RNAs and proteins, representing an area of increasing interest in the field of drug delivery. It has been demonstrated that the exosome cargo, especially miRNAs, is at least partially responsible for the therapeutic effects of exosomes. Exosomes deliver their luminal content to the recipient cells and can be used as vesicles for the therapeutic delivery of RNAs and proteins. Synthetic therapeutic drugs can also be encapsulated into exosomes as they have a hydrophilic core, which makes them suitable to carry water-soluble drugs. In addition, engineered exosomes can display a variety of surface molecules, such as peptides, to target specific cells in tissues. The exosome properties present an added advantage to the targeted delivery of therapeutics, leading to increased efficacy and minimizing the adverse side effects. Furthermore, exosomes are natural nanoparticles found in all cell types and as a result, they do not elicit an immune response when administered. Exosomes have also demonstrated decreased long-term accumulation in tissues and organs and thus carry a low risk of systemic toxicity. This review aims to discuss all the advances in exosome therapies in ophthalmology and to give insight into the challenges that would need to be overcome before exosome therapies can be translated into clinical practice

    Use of the rSpaA415 antigen indicates low rates of Erysipelothrix rhusiopathiae infection in farmed cattle from the United States of America and Great Britain

    Get PDF
    Background Clinical cases of Erysipelothrix rhusiopathiae, a zoonotic gram-positive bacterium, have been reported in many ruminant species, including in cattle, deer, moose and muskoxen. Fatal cases have been repeatedly reported in cattle over the years but to date there is only one Japanese study investigating the seroprevalence of this bacterium in cattle using the growth agglutination test (GAT). This technique is subjective, time-consuming, expensive and hazardous compared to modern serological tests such as enzyme-linked immunosorbent assays (ELISA) or the newly developed fluorescent microbead-based immunoassays (FMIA). Results The FMIA based on the surface protein SpaA (rSpaA415) antigen of E. rhusiopathiae developed in this study had an almost perfect agreement with the GAT (k = 0.83) and showed a sensitivity of 89.7% and a specificity of 92.9% when compared to the GAT. Overall, detection rates of E. rhusiopathiae antibody positive samples were 13.8% (51/370) in British herds and 6% (12/200) in US herds. Positive cattle were present in 34.3% (24/70) of the investigated British farms and in 34.7% (8/23) of the US farms with an on-farm prevalence of 7.1 to 100% for the British farms and 8.3–30% for the US farms. Conclusions FMIA is a fast, safe and economic alternative to the GAT for the diagnosis of E. rhusiopathiae in cattle. This work is the first seroprevalence study of E. rhusiopathiae in healthy farmed cattle in Great Britain and the US and revealed that infection occurs at a low level. Further investigations to evaluate risks of zoonotic transmission when handling cattle are needed

    A high-resolution melt curve toolkit to identify lineage-defining SARS-CoV-2 mutations

    Get PDF
    The emergence of severe acute respiratory syndrome 2 (SARS-CoV-2) variants of concern (VOCs), with mutations linked to increased transmissibility, vaccine escape and virulence, has necessitated the widespread genomic surveillance of SARS-CoV-2. This has placed a strain on global sequencing capacity, especially in areas lacking the resources for large scale sequencing activities. Here we have developed three separate multiplex high-resolution melting assays to enable the identification of Alpha, Beta, Delta and Omicron VOCs. The assays were evaluated against whole genome sequencing on upper-respiratory swab samples collected during the Alpha, Delta and Omicron [BA.1] waves of the UK pandemic. The sensitivities of the eight individual primer sets were all 100%, and specificity ranged from 94.6 to 100%. The multiplex HRM assays have potential as a tool for high throughput surveillance of SARS-CoV-2 VOCs, particularly in areas with limited genomics facilities

    Low-dose acetaminophen induces early disruption of cell-cell tight junctions in human hepatic cells and mouse liver

    Get PDF
    Dysfunction of cell-cell tight junction (TJ) adhesions is a major feature in the pathogenesis of various diseases. Liver TJs preserve cellular polarity by delimiting functional bile-canalicular structures, forming the blood-biliary barrier. In acetaminophen-hepatotoxicity, the mechanism by which tissue cohesion and polarity are affected remains unclear. Here, we demonstrate that acetaminophen, even at low-dose, disrupts the integrity of TJ and cell-matrix adhesions, with indicators of cellular stress with liver injury in the human hepatic HepaRG cell line, and primary hepatocytes. In mouse liver, at human-equivalence (therapeutic) doses, dose-dependent loss of intercellular hepatic TJ-associated ZO-1 protein expression was evident with progressive clinical signs of liver injury. Temporal, dose-dependent and specific disruption of the TJ-associated ZO-1 and cytoskeletal-F-actin proteins, correlated with modulation of hepatic ultrastructure. Real-time impedance biosensing verified in vitro early, dose-dependent quantitative decreases in TJ and cell-substrate adhesions. Whereas treatment with NAPQI, the reactive metabolite of acetaminophen, or the PKCα-activator and TJ-disruptor phorbol-12-myristate-13-acetate, similarly reduced TJ integrity, which may implicate oxidative stress and the PKC pathway in TJ destabilization. These findings are relevant to the clinical presentation of acetaminophen-hepatotoxicity and may inform future mechanistic studies to identify specific molecular targets and pathways that may be altered in acetaminophen-induced hepatic depolarization

    A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury

    Get PDF
    Predicting unanticipated harmful effects of chemicals and drug molecules is a difficult and costly task. Here we utilize a 'big data compacting and data fusion' - concept to capture diverse adverse outcomes on cellular and organismal levels. The approach generates from transcriptomics data set a 'predictive toxicogenomics space' (PTGS) tool composed of 1,331 genes distributed over 14 overlapping cytotoxicity-related gene space components. Involving ∌2.5 × 108 data points and 1,300 compounds to construct and validate the PTGS, the tool serves to: explain dose-dependent cytotoxicity effects, provide a virtual cytotoxicity probability estimate intrinsic to omics data, predict chemically-induced pathological states in liver resulting from repeated dosing of rats, and furthermore, predict human drug-induced liver injury (DILI) from hepatocyte experiments. Analysing 68 DILI-annotated drugs, the PTGS tool outperforms and complements existing tests, leading to a hereto-unseen level of DILI prediction accuracy.Peer reviewe
    corecore