879 research outputs found
Law, Liberty and the Rule of Law (in a Constitutional Democracy)
In the hunt for a better--and more substantial--awareness of the “law,” The author intends to analyze the different notions related to the “rule of law” and to criticize the conceptions that equate it either to the sum of “law” and “rule” or to the formal assertion that “law rules,” regardless of its relationship to certain principles, including both “negative” and “positive” liberties. Instead, he pretends to scrutinize the principles of the “rule of law,” in general, and in a “constitutional democracy,” in particular, to conclude that the tendency to reduce the “democratic principle” to the “majority rule” (or “majority principle”), i.e. to whatever pleases the majority, as part of the “positive liberty,” is contrary both to the “negative liberty” and to the “rule of law” itself
Assessment of the Production of Value-Added Chemical Compounds from Sewage Sludge Pyrolysis Liquids
A procedure to analyze sewage sludge (SS) pyrolysis liquids based on solvent fractionation has been developed. Pyrolysis liquids are separated into three different fractions: heptane soluble (Hep-sol), dichloromethane soluble (DCM-sol), and hydrochloric acid soluble (HCl-sol). Diverse techniques (GC-MS, UPLC-TOF-MS) were employed to qualitatively and quantitatively analyze liquid fractions to assess the potential production of value-added chemicals. Aliphatic hydrocarbons, aliphatic nitriles, and steroids were mostly separated in the Hep-sol fraction, phenols and fatty acids in the DCM-sol fraction, and carboxylic acids and amides in the HCl-sol fraction. The largest production was obtained for ammonia (10–14 kg per tonne of SS) and a-olefins (8–9 kg per tonne of SS). The potential production of some of these value-added chemicals from SS pyrolysis liquid was compared with their current European production. In the case of a-olefins, 16 % of their European production could be achieved by SS pyrolysis
Combustion characteristics of hydrochar and pyrochar derived from digested sewage sludge
In this paper, hydrochars and pyrochars were produced at 260 ºC under different residence times (2 and 4 h) using anaerobic digested sewage sludge (SSL) as initial feedstock. The effect of reaction time on the fuel properties of hydrochars and pyrochars was evaluated. Moreover, the combustion kinetics of raw SSL and the derived pyrochars and hydrochars without coal blending were determined at two different air flows (20 and 90 mL/min) and compared. In the same conditions, the yield of hydrochar was significantly lower than that of pyrochar, confirming the different reaction pathways followed in each process. The results showed hydrochars have lower carbon recovery and energy yield than pyrochars, making the latter more suitable for energy purposes. The thermogravimetric combustion study showed that both thermochemical treatments increased the ignition temperature but decreased the burnout temperature, which results in higher stability during handling and storage. However, raw SSL is better for combustion than hydrochar according to the combustibility index. In addition, the kinetic study showed that the activation energy of the combustion of biochars, especially pyrochar, is lower than that of raw SSL, which is advantageous for their combustion
L\'evy-areas of Ornstein-Uhlenbeck processes in Hilbert-spaces
In this paper we investigate the existence and some useful properties of the
L\'evy areas of Ornstein-Uhlenbeck processes associated to Hilbert-space-valued
fractional Brownian-motions with Hurst parameter . We prove
that this stochastic area has a H\"older-continuous version with sufficiently
large H\"older-exponent and that can be approximated by smooth areas. In
addition, we prove the stationarity of this area.Comment: 18 page
Non-Invasive Electrophysiological Mapping Entropy Predicts Atrial Fibrillation Ablation Efficacy Better Than Clinical Characteristics
[EN] Success rate of atrial fibrillation (AF) ablation remains
far from satisfactory. In this study, a 6 months AF freedom
predictive model based on Fuzzy Entropy of non-invasive
body surface potential maps is compared with clinical
predictors.
The study included 29 patients referred for pulmonary
vein isolated catheter ablation procedure. Non-invasive
electrocardiographic mapping with 54 ECG electrodes
was recorded for all patients during the ablation
procedure. Six months follow up was used to evaluate the
efficacy of the ablation procedure.
Predictions based on non-invasive
electrocardiographic mappings during adenosine infusion
(accuracy: 90%, AUC: 0.93) showed a clear improvement
over standard-of-care clinical parameter models
(accuracy: 62.1%, AUC: 0. 54).
Our results indicate that measurements of
electrophysiological complexity of AF signals could
improve the clinical practice by predicting the efficacy of
AF ablation procedures.This work was supported by the Instituto de Salud
Carlos III FEDER (DTS16/00160; PI16/01123;
PI17/01059; PI17/01106; EIT-Health 19600 AFFINE)De La Nava, AS.; Fabregat, MC.; Rodrigo, M.; Hernández, I.; Liberos, A.; Fernández-Avilés, F.; Guillem Sánchez, MS.... (2019). Non-Invasive Electrophysiological Mapping Entropy Predicts Atrial Fibrillation Ablation Efficacy Better Than Clinical Characteristics. IEEE. 1-4. https://doi.org/10.22489/CinC.2019.299S1
Thermo-Mechanical Treatment Effects on Stress Relaxation and Hydrogen Embrittlement of Cold-Drawn Eutectoid Steels
The effects of the temperature and stretching levels used in the stress-relieving treatment of cold-drawn eutectoid steel wires are evaluated with the aim of improving the stress relaxation behavior and the resistance to hydrogen embrittlement. Five industrial treatments are studied, combining three temperatures (330, 400, and 460 °C) and three stretching levels (38, 50 and 64% of the rupture load). The change of the residual stress produced by the treatments is taken into consideration to account for the results. Surface residual stresses allow us to explain the time to failure in standard hydrogen embrittlement test
Influence of Short Carbon-Chain Alcohol (Ethanol and 1-Propanol)/Diesel Fuel Blends over Diesel Engine Emissions
Oxygenated fuels, in this case short carbon-chain alcohols, have been investigated as alternative fuels to power compression ignition engines. A major advantage of short-chain alcohols is that they can be produced from renewable resources, i.e., cultivated commodities or biomass-based biorefineries. However, before entering the market, the effects of short-chain alcohols on engine performance, exhaust emissions, noise and sound quality need to be understood. This work sheds light on the relationship between the physicochemical properties of the alcohol/diesel fuel blends (ethanol and 1-propanol) on engine performance, exhaust emissions and, for the first time, on noise and sound quality. It has been demonstrated that when the content of alcohol in blends increased, soot and soluble organic material emissions drastically decreased, mainly due to the increase of oxygen content in the fuel. Reduction in soot emissions combined with higher thermodynamic efficiency of alcohol fuels, with respect to diesel fuel, enable their utilization on compression ignition engines. There is also an improvement in the soot-NOx trade off, leading to large reductions on soot with a small effect on NOx emissions. The oxygen content within the fuel reduces CO and THC emissions at extra-urban driving operation conditions. However, hydrocarbons and CO emissions increased at urban driving conditions, due to the high heat of vaporization of the alcohol fuels which reduces cylinder temperature worsening fuel atomization, vaporization and mixing with air being more significant at lower cylinder temperature conditions (low engine loads and speeds). Similarly, the higher the presence of alcohol in the blend, the higher the noise emitted by the engine due to their low tendency to auto-ignition. The optimization of alcohol quantity and the calibration of engine control parameters (e.g., injection settings) which is out of the scope of this work, will be required to overcome noise emission penalty. Furthermore, under similar alcohol content in the blend (10% v/v), the use of propanol is preferred over ethanol, as it exhibits lower exhaust emissions and better sound quality than ethanol
Short-term interaction between silent and devastating earthquakes in Mexico
大地震とスロースリップの相互作用を解明 --メキシコにおける3つの大地震の連鎖的発生のメカニズム--. 京都大学プレスリリース. 2021-04-12.Either the triggering of large earthquakes on a fault hosting aseismic slip or the triggering of slow slip events (SSE) by passing seismic waves involve seismological questions with important hazard implications. Just a few observations plausibly suggest that such interactions actually happen in nature. In this study we show that three recent devastating earthquakes in Mexico are likely related to SSEs, describing a cascade of events interacting with each other on a regional scale via quasi-static and/or dynamic perturbations across the states of Guerrero and Oaxaca. Such interaction seems to be conditioned by the transient memory of Earth materials subject to the “traumatic” stress produced by seismic waves of the great 2017 (Mw8.2) Tehuantepec earthquake, which strongly disturbed the SSE cycles over a 650 km long segment of the subduction plate interface. Our results imply that seismic hazard in large populated areas is a short-term evolving function of seismotectonic processes that are often observable
- …