48 research outputs found

    A Study on Finding the Factors, Hindering the use of digital wallets among youth in Developing Countries

    Get PDF
    A digital wallet or eWallet is a mobile base software application that securely persists consumer s payment information and passwords for numerous payment methods By using an eWallet users can complete their transactions easily and quickly with technologies such as Quick Response QR and near-field communications NFC In the modern world people use digital wallets to engage in financial and non-financial activities using the internet It stores physical financial instruments digitally and provides high availability to convenience to the user Typically to facilitate high security to those financial assets in the digital wallet of the user and to maintain reliability and availability mobile application developing organizations follow different authorization mechanisms Problem prevailing in a developing country similar to Sri Lanka is the less use of digital wallets in day to day transactions The final outcome of the research will be to find the factors which affect the use of digital wallets in Sri Lankan students who study in western province universitie

    Cyclic oligoadenylate signaling and regulation by ring nucleases during type III CRISPR defense

    Get PDF
    We thank the RNA society for an invitation to submit this work as part of a 2021 RNA Society/Sacringe Graduate Student Award. The work in the authors’ lab described in this article was supported by research grants from the Biotechnology and Biological Sciences Research Council (REF: BB/S000313/1 and BB/T004789/1).In prokaryotes, CRISPR-Cas immune systems recognise and cleave foreign nucleic acids to defend against Mobile Genetic Elements (MGEs). Type III CRISPR-Cas complexes also synthesise cyclic oligoadenylate (cOA) second messengers, which activate CRISPR ancillary proteins involved in antiviral defence. In particular, cOA-stimulated nucleases degrade RNA and DNA non-specifically, which slows MGE replication but also impedes cell growth, necessitating mechanisms to eliminate cOA in order to mitigate collateral damage. Extant cOA is degraded by a new class of enzyme termed a 'ring nuclease', which cleaves cOA specifically and switches off CRISPR ancillary enzymes. Several ring nuclease families have been characterised to date, including a family used by MGEs to circumvent CRISPR immunity, and encompass diverse protein folds and distinct cOA cleavage mechanisms. In this review we outline cOA signalling, discuss how different ring nucleases regulate the cOA signalling pathway, and reflect on parallels between cyclic nucleotide-based immune systems to reveal new areas for exploration.Publisher PDFPeer reviewe

    Fuse to defuse : a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence

    Get PDF
    Funding: Biotechnology and Biological Sciences Research Council [REF BB/S000313/1 to M.F.W.]; Funding for open access charge: RCUK block grant.Type III CRISPR systems synthesise cyclic oligoadenylate (cOA) second messengers in response to viral infection of bacteria and archaea, potentiating an immune response by binding and activating ancillary effector nucleases such as Csx1. As these effectors are not specific for invading nucleic acids, a prolonged activation can result in cell dormancy or death. Some archaeal species encode a specialised ring nuclease enzyme (Crn1) to degrade cyclic tetra-adenylate (cA4) and deactivate the ancillary nucleases. Some archaeal viruses and bacteriophage encode a potent ring nuclease anti-CRISPR, AcrIII-1, to rapidly degrade cA4 and neutralise immunity. Homologues of this enzyme (named Crn2) exist in type III CRISPR systems but are uncharacterised. Here we describe an unusual fusion between cA4-activated CRISPR ribonuclease (Csx1) and a cA4-degrading ring nuclease (Crn2) from Marinitoga piezophila. The protein has two binding sites that compete for the cA4 ligand, a canonical cA4-activated ribonuclease activity in the Csx1 domain and a potent cA4 ring nuclease activity in the C-terminal Crn2 domain. The cA4 binding affinities and activities of the two constituent enzymes in the fusion protein may have evolved to ensure a robust but time-limited cOA-activated ribonuclease activity that is finely tuned to cA4 levels as a second messenger of infection.Publisher PDFPeer reviewe

    Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage

    Get PDF
    Type III CRISPR systems detect foreign RNA and activate the cyclase domain of the Cas10 subunit, generating cyclic oligoadenylate (cOA) molecules that act as a second messenger to signal infection, activating nucleases that degrade the nucleic acid of both invader and host. This can lead to dormancy or cell death; to avoid this, cells need a way to remove cOA from the cell once a viral infection has been defeated. Enzymes specialised for this task are known as ring nucleases, but are limited in their distribution. Here, we demonstrate that the widespread CRISPR associated protein Csx3, previously described as an RNA deadenylase, is a ring nuclease that rapidly degrades cyclic tetra-adenylate (cA4). The enzyme has an unusual cooperative reaction mechanism involving an active site that spans the interface between two dimers, sandwiching the cA4 substrate. We propose the name Crn3 (CRISPR associated ring nuclease 3) for the Csx3 family.Publisher PDFPeer reviewe

    The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling

    Get PDF
    This work was supported by a grant from the Biotechnology and Biological Sciences Research Council (Grant REF BB/S000313/1 to MFW) and the Wellcome Trust (Grant 210486/Z/18/Z to CMC).Cyclic nucleotide second messengers are increasingly implicated in prokaryotic anti-viral defence systems. Type III CRISPR systems synthesise cyclic oligoadenylate (cOA) upon detecting foreign RNA, activating ancillary nucleases that can be toxic to cells, necessitating mechanisms to remove cOA in systems that operate via immunity rather than abortive infection. Previously, we demonstrated that the Sulfolobus solfataricus type III-D CRISPR complex generates cyclic tetra-adenylate (cA4), activating the ribonuclease Csx1, and showed that subsequent RNA cleavage and dissociation acts as an ‘off-switch’ for the cyclase activity. Subsequently, we identified the cellular ring nuclease Crn1, which slowly degrades cA4 to reset the system (Rouillon et al., 2018), and demonstrated that viruses can subvert type III CRISPR immunity by means of a potent anti-CRISPR ring nuclease variant AcrIII-1. Here, we present a comprehensive analysis of the dynamic interplay between these enzymes, governing cyclic nucleotide levels and infection outcomes in virus-host conflict.Publisher PDFPeer reviewe

    Control of cyclic oligoadenylate synthesis in a type III CRISPR system

    Get PDF
    This work was supported by a grant from the Biotechnology and Biological Sciences Research Council (REF: BB/M000400 /1 to MFW), and a Royal Society Challenge Grant (REF: CH160014 to MFW).The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3' end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The 'RNA shredding' activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.Publisher PDFPeer reviewe

    Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence

    Get PDF
    Royal Society Challenge Grant [REF: CH160014 to M.F.W.]; Biotechnology and Biological Sciences Research Council [REF: BB/S000313/1 to M.F.W.]. Funding for open access charge: Institutional Block Grant.The CRISPR system provides adaptive immunity against mobile genetic elements (MGE) in prokaryotes. In type III CRISPR systems, an effector complex programmed by CRISPR RNA detects invading RNA, triggering a multi-layered defence that includes target RNA cleavage, licencing of an HD DNA nuclease domain and synthesis of cyclic oligoadenylate (cOA) molecules. cOA activates the Csx1/Csm6 family of effectors, which degrade RNA non-specifically to enhance immunity. Type III systems are found in diverse archaea and bacteria, including the human pathogen Mycobacterium tuberculosis. Here, we report a comprehensive analysis of the in vitro and in vivo activities of the type III-A M. tuberculosis CRISPR system. We demonstrate that immunity against MGE may be achieved predominantly via a cyclic hexa-adenylate (cA6) signalling pathway and the ribonuclease Csm6, rather than through DNA cleavage by the HD domain. Furthermore, we show for the first time that a type III CRISPR system can be reprogrammed by replacing the effector protein, which may be relevant for maintenance of immunity in response to pressure from viral anti-CRISPRs. These observations demonstrate that M. tuberculosis has a fully-functioning CRISPR interference system that generates a range of cyclic and linear oligonucleotides of known and unknown functions, potentiating fundamental and applied studies.Publisher PDFPeer reviewe

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios
    corecore