
Cyclic oligoadenylate signaling and regulation by ring
nucleases during type III CRISPR defense

JANUKA S. ATHUKORALAGE and MALCOLM F. WHITE

Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, KY16 9ST St. Andrews, United Kingdom

ABSTRACT

In prokaryotes, CRISPR-Cas immune systems recognize and cleave foreign nucleic acids to defend against mobile genetic
elements (MGEs). Type III CRISPR-Cas complexes also synthesize cyclic oligoadenylate (cOA) second messengers, which
activate CRISPR ancillary proteins involved in antiviral defense. In particular, cOA-stimulated nucleases degrade RNA
and DNA nonspecifically, which slows MGE replication but also impedes cell growth, necessitating mechanisms to elimi-
nate cOA in order to facilitate cell recovery. Extant cOA is degraded by a new class of enzyme termed a “ring nuclease,”
which cleaves cOA specifically and switches off CRISPR ancillary enzymes. Several ring nuclease families have been char-
acterized to date, including a family used by MGEs to circumvent CRISPR immunity, and encompass diverse protein folds
and distinct cOA cleavage mechanisms. In this review we examine cOA signaling, discuss how different ring nucleases reg-
ulate the cOA signaling pathway, and reflect on parallels between cyclic nucleotide-based immune systems to reveal new
areas for exploration.
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TYPE III CRISPR SYSTEMS AND CYCLIC
OLIGOADENYLATE SIGNALING

CRISPR-Cas systems capture and store fragments of for-
eign DNA, transcribe these into CRISPR RNA (crRNA),
and carry out homology-directed nucleic acid cleavage
to protect prokaryotes from invading mobile genetic ele-
ments (MGEs) (Makarova et al. 2020a). Type III CRISPR sys-
tems comprise a multisubunit ribonucleoprotein effector
complex and ancillary effector proteins, which are recruited
for defense by antiviral signaling (Fig. 1). Activation of the

immune response relies on the lack of base-pairing be-
tween the 8 nt 5′-end of the crRNA and the 3′-end of a
target RNA, which is key to distinguishing nonself (Marraf-
fini and Sontheimer 2010; Hale et al. 2012; Zhang et al.
2012; Johnson et al. 2019). When viral mRNA is detected,
the large Cas10 subunit is allosterically activated to carry
out twoenzymatic activities: ssDNAcleavagebyanHD (his-
tidine-aspartate) nuclease domain (Elmore et al. 2016;
Estrella et al. 2016; Kazlauskiene et al. 2016; Liu et al.
2017; Jia et al. 2019a) and cyclic oligoadenylate (cOA) syn-
thesis by the Palm polymerase domains (Kazlauskiene et al.
2017; Niewoehner et al. 2017; Jia et al. 2019a; You et al.
2019; Sofos et al. 2020). cOA acts as a second messenger
and binds to CRISPR-associated Rossmann fold (CARF) do-
mains of CRISPR ancillary proteins, allosterically activating
the adjacent effector domains, which are commonly non-
specific nucleases (Fig. 2; Kazlauskiene et al. 2017; Nie-
woehner et al. 2017; McMahon et al. 2020; Rostøl et al.
2021; Zhu et al. 2021). Importantly, not all Cas10 proteins
have a catalytically active HD domain and some lack it alto-
gether (Staals et al. 2013; Grüschow et al. 2019; Makarova
et al. 2020a), emphasizing that these systems likely rely on
the cOA signaling pathway for antiviral defense.
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Cas7 subunits comprise the backbone of the type III ef-
fector complex and cleave bound RNA, regardless of host
or viral genomic origin. This is predicted to allow for mul-
tiple-turnover detection and continued surveillance by
the effector complex (Rouillon et al. 2018). A conserved as-
partate residue in Cas7 is responsible for RNA cleavage
(Benda et al. 2014; Ramia et al. 2014; Staals et al. 2014;
Tamulaitis et al. 2014), and whereas RNA cleavage by
the effector complex is not essential for resistance to
phage infection in vivo (Samai et al. 2015), it switches off
the ssDNase and cOA synthesis activities of Cas10 that
are activated by bona fide targets (Kazlauskiene et al.
2017; Niewoehner et al. 2017; Rouillon et al. 2018). There-
fore, it is likely that RNA cleavage by the effector complex
serves to exert control over the potent HD nuclease and
cOA signaling activities, rather than as a primary mode
of defense (Rouillon et al. 2018). Nevertheless, if extant
cOA is not eliminated from cells it can sustain the immune
response (Garcia-Doval et al. 2020) and has the
potential to compromise cell survival (Koonin and Makar-
ova 2018).

Cas10 can synthesize cOA of different sizes, containing
between three and six 3′–5′ linked AMP units, although in
vitro most type III systems generate a single cOA species
in greater abundance (Kazlauskiene et al. 2017;
Niewoehner et al. 2017; Rouillon et al. 2018; Grüschow
et al. 2019; Smalakyte et al. 2020). The mechanism for
cOA synthesis has been elucidated using structural biology
and involves a nucleophilic attack by the 3′-hydroxyl of one
ATP molecule, held in one Palm polymerase pocket of
Cas10, on the α-phosphate of another ATP molecule held
in the other Palm polymerase pocket (Jia et al. 2019b).
Once the first pppApA intermediate is formed, it is then
subjected to further rounds of AMP incorporation in the
same manner (Kazlauskiene et al. 2017; Niewoehner et al.
2017; Jia et al. 2019b). Finally, intermediates are cyclised
by an intramolecular nucleophilic attack by the 3′-hydroxyl
on the α-position of its 5′-triphosphate (Jia et al. 2019b).
The factors governing the type(s) and abundance of cOA
molecules made, which may be determined by the protein
architecture of Cas10 homologs and/or cellular ATP levels,
remain to be fully explored.

FIGURE 1. Cyclic oligoadenylate signaling by type III CRISPR systems. Multisubunit type III CRISPR-Cas complexes (denoted Csm or Cmr) detect
foreign RNA and carry out nucleic acid cleavage directly and by recruiting CRISPR ancillary enzymes. RNAboundby theCRISPR-Cas complex, as a
result of complementary base-pairing with the crRNA, is degraded by the Cas7 (Csm3/Cmr4) backbone subunits (Benda et al. 2014; Ramia et al.
2014; Staals et al. 2014; Tamulaitis et al. 2014). Bona fide RNA targets contain a 3′-region that is not complementary to the 8 nt 5′-end of the
crRNA, which allosterically activates the Cas10 subunit to synthesize cyclic oligoadenylates (cOA) and cleave ssDNA (Kazlauskiene et al. 2017;
Niewoehner et al. 2017). Target RNA cleavage by Cas7 subunits switches off both the ssDNase and cOA synthesis activities of Cas10
(Rouillon et al. 2018). cOA can activate Csx1/Csm6 ribonucleases that cleave RNA nonspecifically, DNases such as NucC (Lau et al. 2020) and
the CRISPR ancillary nuclease 1 (Can1) (McMahon et al. 2020), and the related dual-specificity cOA-activated RNase and DNase (Card1)/Can2
(Rostøl et al. 2021; Zhu et al. 2021), which help eliminate invading mobile genetic elements (MGE). cOA can also stimulate the transcription reg-
ulator Csa3, which alters CRISPR loci and cas gene expression to promote MGE elimination (Lawrence et al. 2020).
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Most type III systems characterized to date use cyclic tet-
ra-adenylate (cA4) as the second messenger (Kazlauskiene
et al. 2017; Han et al. 2018; Rouillon et al. 2018; Jia et al.
2019b; Foster et al. 2020; Steens et al. 2021), but several
use cyclic hexa-adenylate (cA6) instead (Niewoehner
et al. 2017; Nasef et al. 2019; Sridhara et al. 2021).
Within these systems, the CARF domains of cognate
CARF family effector(s) specifically recognize one of these
signals (Rouillon et al. 2018; Molina et al. 2019; Garcia-

Doval et al. 2020; McMahon et al.
2020). Csx1/Csm6 ribonucleases are
the most common CARF family pro-
teins associated with type III CRISPR
systems (Makarova et al. 2020a).
When activated by cA4 or cA6, as de-
termined by the CARF domain archi-
tecture, Csx1/Csm6 cleaves RNA
using its higher eukaryotes and pro-
karyotes nucleotide-binding (HEPN)
domain (Kazlauskiene et al. 2017; Nie-
woehner et al. 2017). The nonspecific
RNase activity of Csm6 has been
shown to result in cell growth arrest,
and cell growth is restoredwhen infec-
tion is cleared from cells (Rostøl and
Marraffini 2019). cA4 has also been
shown to bind to theCARF family tran-
scription regulator Csa3 (Lawrence
et al. 2020), which up-regulates
CRISPR loci and cas gene expression
(Liu et al. 2015; Lawrence et al. 2020;
Ye et al. 2020b), presumably acting
as a positive-feedback mechanism
linked to MGE detection. Several
cOA-activated DNA nucleases also
feature in CRISPR immunity. CRISPR
ancillary nuclease 1 (Can1) has been
shown to nick super-coiled DNA
when activated by cA4 and is anticipat-
ed to slow phage replication by col-
lapsing replication forks (McMahon
et al. 2020). The related Can2 enzyme,
also termed cOA-activated RNase and
DNase 1 (Card1), was demonstrated to
be a dual-specificity nuclease capable
ofbothRNAandDNAcleavage (Rostøl
et al. 2021; Zhu et al. 2021). While one
study showed that select Card1/Can2
enzymescleavedssRNAandnickedsu-
per-coiled DNA to provide antiphage
immunity (Zhu et al. 2021), another
identified a Card1/Can2 that cleaved
ssRNA and exclusively ssDNA and pro-
vided antiphage immunity (Rostøl et al.
2021). Interestingly, the authors attrib-

uted the accompanying cell growth arrest phenotype to
the ssDNase activity, which is presumed to cause DNA le-
sions in the host chromosome, rather than theRNase activity
of Card1/Can2 (Rostøl et al. 2021). AnotherDNase,NucC, is
a cA3-activatedenzymeassociatedwith both type III CRISPR
systems and cyclic oligonucleotide-based antiphage signal-
ing systems (CBASS) (Lau et al. 2020; Ye et al. 2020a). As a
CBASS component, NucC has been shown to degrade
dsDNA nonspecifically and trigger cell death before phage
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FIGURE 2. Structures of type III CRISPR ancillary proteins. (A) E. italicus (Eit) Csm6 dimer in
complex with its cyclic hexa-adenylate (cA6) activator (shown in sphere form). EitCsm6 is a non-
specific ribonuclease containing CARF (dark and light blue) and HEPN (dark and light green)
domains (Garcia-Doval et al. 2020). (B) T. onnurineus (Ton) Csm6 dimer in complex with its cy-
clic tetra-adenylate (cA4) activator. TonCsm6 is a nonspecific ribonuclease consisting of CARF
and HEPN domains (Jia et al. 2019c). (C ) S. islandicus (Sis) Csx1 hexamer in complex with its
cA4 activator. SisCsx1 dimers form a hexamer upon cA4 binding and RNA is cleaved at three
distinct active sites within the interior of the hexamer (Molina et al. 2019). (D) S. solfataricus
(Sso) Csa3 dimer. SsoCsa3 is a cA4 stimulated transcription regulator consisting of CARF and
a helix-turn-helix DNA binding domain (yellow and orange) (Lintner et al. 2011). (E) T. thermo-
philus (Tth) CRISPR ancillary nuclease 1 (Can1) monomer in complex with its cA4 activator.
TthCan1 nicks super-coiled DNA and is comprised of two CARF domains and a PD-D/ExK fam-
ily nuclease domain (salmon colored) (McMahon et al. 2020). (F ) T. succinifaciens cyclic oligoa-
denylate activated RNase and DNase 1 (Card1)/Can2 dimer in complex with its cA4 activator.
Card1/Can2 is related to Can1 and is a dual-specificity nuclease with CARF and PD-D/ExK nu-
clease domains (red and salmon) (Rostøl et al. 2021; Zhu et al. 2021). (G) E. coli (Eco) NucC hex-
amer in complex with its cyclic tri-adenylate (cA3) activator. EcoNucC trimers assemble into a
hexamer upon cA3 binding and degrades dsDNA (Lau et al. 2020). NucC is related to restric-
tion endonucleases and binds cA3 at a protein domain unrelated to the CARF family.
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replication is complete (Lau et al. 2020; Ye et al. 2020a).
NucC is expected to act similarly during type III CRISPR im-
munity, and its activation may represent an instance when
adaptive immunity leads to abortive infection.

REGULATION OF CYCLIC OLIGOADENYLATE
SIGNALING

Nonspecific degradation of DNA and RNAby cOA-activat-
ed nucleases imbue type III CRISPR systems with an intrin-
sic potential for self-destruction. While collateral cleavage
of host nucleic acids may instigate cell dormancy to slow
viral propagation, as has been uncovered for the in trans
nonspecific RNase activity of a type VI (Cas13) CRISPR sys-
tem (Meeske et al. 2019), it will compromise cell survival if
not carefully regulated. To overcome this problem, type III
CRISPR systems harbor two regulatory mechanisms. First,
cOA synthesis is switched off by target RNA cleavage
(Kazlauskiene et al. 2017; Han et al. 2018; Rouillon et al.
2018; Grüschow et al. 2019; Nasef et al. 2019), and sec-
ond, extant cOA is eliminated within cells to switch off
CRISPR ancillary enzymes (Athukoralage et al. 2018).

Switching off cOA synthesis is not enough

Although target RNA cleavage by the type III effector com-
plex switches off cOA synthesis (Kazlauskiene et al. 2017;
Han et al. 2018; Rouillon et al. 2018; Grüschow et al.
2019; Nasef et al. 2019), extant cOA is predicted to sustain
the immune response (Athukoralage et al. 2020a). In vitro,
the Sulfolobus solfataricus type III-D CRISPR system has
been shown to synthesize approximately 1000 molecules
of cA4 per viralmRNA (Rouillon et al. 2018, 2019; Athukora-
lage et al. 2020a), which equates to ∼6 µM cA4 in a S. sol-
fataricus cell, in significant excess of what is required to
activate the Csx1 RNase (Athukoralage et al. 2020a). While
cOA synthesis is ended by viral mRNA cleavage, themicro-
molarquantities of cOAalreadymademustbeeliminated if
the immune response is to be switched off in a timely man-
ner. The need to control the immune response and miti-
gate collateral damage has likely led to the evolution of
cOA degradative enzymes, which have been termed
“ring nucleases” (Athukoralage et al. 2018).

Ring nucleases

CRISPR ring nuclease 1

cOA degradative enzymes were first identified by activity-
guided fractionation of S. solfataricus cellular lysates and
identification of enriched proteins by mass spectrometry
(Athukoralage et al. 2018). The identified protein
Sso2081, and the related protein Sso1393, were shown
to act as standalone enzymes that degraded cA4 specifi-

cally and were named CRISPR ring nucleases 1 (Crn1)
(Fig. 3A; Athukoralage et al. 2018). Crn1 enzymes are
CARF domain only proteins that have evolved to catalyze
cOA cleavage and do so by cleaving the symmetrical cA4

molecule as a protein dimer (Athukoralage et al. 2018).
The two S. solfataricus Crn1 enzymes exhibited a 10-fold
difference in the rate of cA4 cleavage, which result in vari-
able capacities for Csx1 deactivation, and may therefore
be leveraged temporally or synergistically for cA4 elimina-
tion (Athukoralage et al. 2018). Protein sequence analyses
and structural modeling suggest that Sso1393, Sso2081,
and the uncharacterized Sso1397, which is predicted to
be a ring nuclease, are orthologs and likely originated
from gene duplication events (Athukoralage et al. 2018;
Makarova et al. 2020b). Crn1 enzymes are exclusive to
the crenarchaea, and Sulfolobales typically encode several
Crn1 orthologs alongside Csx1/Csm6 (for review, see Zink
et al. 2020). For example, S. islandicus REY15A encodes
two Crn1 enzymes that degrade cA4 made by its type III-
B CRISPR system, and like Crn1 enzymes from S. solfatari-
cus, one ring nuclease appears to degrade cA4 at a higher
rate compared to the other (Molina et al. 2019). AsCrn1 en-
zymes degrade cOA slowly (Athukoralage et al. 2018), the
presence of multiple Crn1 enzymes may reflect the regula-
tory needs of a given type III CRISPR system, particularly
where large quantities of cOA are made even at low levels
of infection as per the S. solfataricus type III-D CRISPR sys-
tem (Athukoralage et al. 2020a).

While cyclic nucleotide phosphodiesterases typically co-
ordinate metal ions to catalyze cyclic nucleotide cleavage
(for review, see Conti and Beavo 2007), Crn1 is metal-inde-
pendent and yields cA4 cleavage products containing
2′,3′-cyclic phosphates (Athukoralage et al. 2018). Crn1 en-
zymes catalyze cA4 cleavage by positioning and/or activat-
ing the 2′-hydroxyl group of a ribose for an in-line
nucleophilic attack on the adjacent scissile phosphodiester
bond (Athukoralage et al. 2018). The first nucleophilic attack
generates a linear tetra-adenylate containing a 2′,3′-cyclic
phosphate (A4>P), which is then converted to two mole-
cules of di-adenylate containing a 2′,3′-cyclic phosphate
(A2>P) by the second nucleophilic attack on the other
side of the molecule (Athukoralage et al. 2018). The final
A2>P products do not stimulate CARF family CRISPR ancil-
lary effectors such as Csx1 (Athukoralage et al. 2018;Molina
et al. 2019). Consequently, ring nucleases are poised to act
as crucial regulatorsof the type III CRISPR immune response.
Indeed, computational modeling demonstrates that Crn1
curtails RNA cleavage by decreasing the active form of
Csx1over time,andwithoutCrn1celldeath is themostprob-
able outcome (Fig. 3B; Athukoralage et al. 2020a).

Self-inactivating CRISPR ancillary ribonucleases

In the absence of standalone ring nucleases some Csm6
enzymes have adapted to intrinsically degrade their cOA
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activators. Several Csm6 enzymes have a CARF domain
that acts as a dual cOA sensor and ring nuclease and this
has been proposed to facilitate timed deactivation of the
RNase component (Athukoralage et al. 2019; Jia et al.
2019c; Garcia-Doval et al. 2020; Smalakyte et al. 2020).

In this model, cOA is cleaved at the CARF domain as it al-
losterically stimulates the HEPN RNase domain (Fig. 3C).
First, cOA is cleaved to generate an A4>P intermediate,
which is known to support HEPN RNase activation
(Niewoehner et al. 2017; Rouillon et al. 2018, 2019),

E F

BA

C D

FIGURE 3. Ring nucleases regulate the type III CRISPR immune response. (A) Cyclic tetra-adenylate (cA4)-activated Csx1 ribonucleases cleave
RNA nonspecifically, which provides antiviral immunity but also causes collateral damage to cells. cA4 binds the CRISPR-associated Rossmann
fold (CARF) domain of Csx1 and allosterically activates its higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain, which cleaves
RNA. CRISPR ring nucleases 1 and 3 eliminate extant cA4 and deactivate Csx1, mitigating sustained collateral damage to cells. (B) Graph depict-
ing kinetic modeling of the type III CRISPR response in a cell where 60 µM of cA4 is generated upon infection, representative of a medium-level
infection. In the absence of ring nucleases, Csx1 remains in an active state (dotted green line, corresponding to left-hand side y-axis) and RNA
cleavage (solid green line, corresponding to right-hand side y-axis) continues unimpeded. Csx1 is slowly deactivated when CRISPR ring nuclease
1 is present (dotted blue line) and thus RNA cleavage is limited (solid blue line). Simulations were carried out using KinTek Global Kinetic Explorer
software (Johnson et al. 2009), using a previously published model of the S. solfataricus type III CRISPR defense pathway (Athukoralage et al.
2020a), and data were plotted using GraphPad Prism. (C ) Some Csm6 enzymes act as bifunctional ribonucleases and ring nucleases. These en-
zymes cleave cA4 at the CARF domain upon cA4 binding and activating the HEPN RNase. Some Csm6 enzymes also cleave cOA at the HEPN
domain. (D) Prokaryotic viruses encode an anti-CRISPR viral ring nuclease (AcrIII-1). AcrIII-1 rapidly degrades cA4 and attenuates RNA cleavage
by swiftly deactivating Csx1. (E) Graph depicting the effect of having no ring nuclease (green), a host cell CRISPR ring nuclease 1 (blue), and both
CRISPR ring nuclease 1 and AcrIII-1 on the active form of Csx1 (dotted lines, left-hand side y-axis) and consequent RNA cleavage (solid lines, right-
hand side y-axis). When AcrIII-1 is present, Csx1 is deactivated much more quickly. (F ) In some bacteria, AcrIII-1 homologs are found associated
with type III CRISPR systems and these proteins have been named CRISPR ring nuclease 2 (Crn2). InMarinitoga piezophile, Csx1 is fused to Crn2,
which limits Csx1 activity by rapidly and constitutively degrading cA4. The Crn2 domain only permits Csx1 activation when a high cA4 threshold,
determined by the balance between cA4 affinity of the CARF domain of Csx1 and the high cA4 affinity and rate of degradation by Crn2, is reached.
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whereas the second cleavage event generates two A2>P
products and deactivates the enzyme, similar to the cata-
lytic mechanism of Crn1 (Athukoralage et al. 2018).
Notably, no standalone ring nucleases have yet been iden-
tified that degrade cA6, although several Csm6 enzymes
possess cA6 degradative CARF domains (Garcia-Doval
et al. 2020; Smalakyte et al. 2020). Site-directed mutagen-
esis to abolish cOA cleavage at one such CARF domain
was found to result in sustained RNA cleavage by Csm6,
which led to a strong growth inhibition phenotype, high-
lighting the crucial role of ring nuclease activity in cell re-
covery (Garcia-Doval et al. 2020).

SomeCsm6/Csx1 enzymes also degrade cA4 and cA6 by
their HEPN RNase domain (Jia et al. 2019c; Foster et al.
2020; Smalakyte et al. 2020), although this may be a side
reaction. For S. thermophilus Csm6, the HEPN domain
has been shown to exhibit higher affinity for single-strand-
ed RNA substrates compared to cA6, and the CARF
domain was found to have higher affinity for cA6 compared
to the HEPN domain (Smalakyte et al. 2020). These obser-
vations suggest that CARF ring nuclease activity will be
particularly important at low cA6 levels, as the lower cA6

binding affinity of the HEPN domain may prevent it from
eliminating cOA sufficiently to preclude Csm6 activation.
Nevertheless, the S. thermophilus Csm6 HEPN domain
was highly efficient at cA6 degradation compared to its
CARF domain (Smalakyte et al. 2020), and lesser confor-
mational restraints associated with cA6 compared to other
cOA species may enable its rapid turnover at the HEPN ac-
tive site. While single-stranded RNA substrates and cOA
appear to be cleaved similarly by the HEPN domain (Jia
et al. 2019c), it is worth noting that only Csx1/Csm6 that
lack cleavage preferences (Kazlauskiene et al. 2017;
Athukoralage et al. 2019), or cleave selectively after aden-
osines (Sheppard et al. 2016; Jia et al. 2019c), are likely to
support cOA cleavage at the HEPN active site.

Viral ring nuclease AcrIII-1

Type III CRISPR immunity is capable of driving viruses to ex-
tinction (Pyenson et al. 2017). cOA-activated effector pro-
teins that inhibit viral replication are therefore anticipated
to drive viruses to evolvemechanisms to inhibit cOAsignal-
ing. Indeed, diverse archaeal viruses, proviruses, bacterio-
phages, prophages, andplasmids encode a highly efficient
cA4 degradative enzyme (Athukoralage et al. 2020b). The
DUF1874-family viral ring nuclease was shown to degrade
cA4 at a rate ∼50-fold greater than cellular Crn1 enzymes,
enabling MGEs to circumvent type III CRISPR immunity
(Fig. 3D;Athukoralage et al. 2020b). As an anti-CRISPRpro-
tein, the viral ring nucleasewas named (AcrIII-1), in keeping
with established anti-CRISPR nomenclature (Bondy-
Denomy et al. 2018) but incorporating a hyphen to denote
that it is not type III subtype-specific. In agreement with
biochemistry and microbiology studies, kinetic modeling

has been used to show that AcrIII-1 is able to quickly
decrease the level of activated Csx1 in cells by rapidly de-
grading cA4, which underlies its potent anti-CRISPR func-
tion (Fig. 3E; Athukoralage et al. 2020a).

AcrIII-1 is a metal-independent ring nuclease that forms
A2>P products similar to Crn1 enzymes (Athukoralage
et al. 2020b). Both AcrIII-1 and Crn1 bind cA4 with high af-
finity (Athukoralage et al. 2020a), therefore its greater cat-
alytic efficiency is ascribed to conserved active site
residues that better position the 2′-hydroxyl of the ribose
for an in-line nucleophilic attack, stabilize the transition
state, and protonate the leaving group (Athukoralage
et al. 2020b). In particular, a highly conserved active site
histidine residue is critical for cA4 cleavage and is postulat-
ed to act as the general acid involved in protonating the
oxyanion leaving group (Athukoralage et al. 2020b).

Co-option of viral ring nucleases by bacteria: CRISPR ring
nuclease 2

Intriguingly, AcrIII-1 is found in association with type III
CRISPR systems in several bacteria, independent of MGEs
(Athukoralage et al. 2020b). Due to the wide distribution
ofAcrIII-1 amongMGEs, it is plausible thatbacteria acquired
AcrIII-1 by horizontal gene transfer from MGEs and har-
nessed the enzyme to regulate cOA signaling. AcrIII-1 asso-
ciated with type III CRISPR systems have been termed
CRISPR ring nuclease 2 (Crn2) (Athukoralage et al. 2020b).

InMarinitoga piezophila (Mpi), a Csx1 protein is fused to
Crn2, directly implicating this Crn2 in Csx1 regulation
(Samolygo et al. 2020). The Crn2 domain was shown to
exhibit constitutive cA4 degradation at a rate comparable
to AcrIII-1 enzymes (Samolygo et al. 2020). However, cA4

degradation by the Crn2 domain limited but did not abol-
ish RNA cleavage by Csx1, consistent with MpiCsx1–Crn2
acting as a self-limiting ribonuclease (Samolygo et al.
2020). High micromolar levels of cA4 were required to
detect MpiCsx1–Crn2 RNase activity, which is attributed
to the higher cA4 affinity and potent ring nuclease activity
of the Crn2 domain (Samolygo et al. 2020). The Crn2
domain likely prevents spurious activation of Csx1, permit-
ting RNA degradation only once a set cA4 threshold—per-
haps a molecular signature of a bona fide infection—has
been reached (Fig. 3F). Interestingly, the majority of crn2
genes encode standalone enzymes (Athukoralage et al.
2020b), and in these cases Crn2 expressionmay be tempo-
rally regulated so as not to compromise the antiviral re-
sponse by rapid elimination of cOA.

CRISPR ring nuclease 3

In prokaryotic phyla where crn1 genes are absent, csx3 is
commonly found associated with type III CRISPR systems,
and csx1 or csm6 are its most common adjacent genes
(Shah et al. 2019; Makarova et al. 2020b). Early studies on
Archaeoglobus fulgidus (Afu) Csx3 identified the protein
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as amanganese dependent RNA exoribonuclease that spe-
cifically cleaved 3′ poly(A) tails (Yan et al. 2015), although its
precise role in antiviral immunity remained unclear.
Recently, the enzymatic activities of AfuCsx3 were reas-
sessed and the protein was demonstrated to be a cA4-spe-
cific ring nuclease (Athukoralage et al. 2020c; Brown et al.
2020). Csx3 has been shown to regulate Csx1-mediated im-
munity in vivo and was therefore renamed CRISPR ring nu-
clease 3 (Crn3) (Athukoralage et al. 2020c). Surprisingly,
Crn3 degraded cA4 at a rate comparable to AcrIII-1 en-
zymes in vitro; however, in vivo studies showed that Crn3
provided only partial protection fromCsx1 toxicity, whereas
AcrIII-1 provided near complete protection by fully deacti-
vating the pathway (Athukoralage et al. 2020c).
Based on structural topology, Crn3 was initially postulat-

ed to be a divergent member of the CARF family (Topuzlu
and Lawrence 2016). However, recent structural analysis
indicates that Crn3 is more closely related to sulfate trans-
porter and anti-sigma factor antagonist (STAS) domains
(Makarova et al. 2020b). X-ray structures revealed that
Crn3 forms head to tail filaments containing cA4 bound be-
tween adjacent dimers (Fig. 3A; Athukoralage et al.
2020c). In contrast to the metal-independent Crn1 family,
Crn3 relies on manganese ions to cleave cA4 into A2>P
and A2P (di-adenylate containing 5′-hydroxyl and 3′-phos-
phate moieties) products. One face of Crn3 harbors three
highly conserved histidine residues, which may coordinate
up to threemanganese ions required for catalysis, whereas
the other face harbors a conserved aspartate that is also
catalytically important. Dimer-dimer stacking leads to the
union of these two faces, otherwise over 20 Å apart, and
forms the composite active site (Athukoralage et al.
2020c). While the cOA cleavagemechanism is not fully un-
derstood, kinetic studies show cooperativity in the Crn3 re-
action cycle, which suggests that the rate of cA4

elimination may be controlled by altering Crn3 levels in
cells (Athukoralage et al. 2020c).
Intriguingly, cyanobacteria encode a protein family con-

taining an amino-terminal Crn3 domain and a carboxy-ter-
minal AAA+ (ATPases associated with diverse cellular
activities) ATPase domain (Shah et al. 2019). AAA+ ATPase
domainshydrolyzeATP todrive a rangeof cellular processes
including protein unfolding and degradation and DNA re-
pair, replication, and recombination (for review, see Ogura
and Wilkinson 2001). Hence the coupling of Crn3 and an
AAA+ ATPase may indicate that cOA degradation is linked
to other cellular pathways. Additionally, recent work has un-
covered a gene containing both Csx1 and Crn3 domains in
Thermodesulfobium narugense (Makarova et al. 2020b),
directly implicating Crn3 in Csx1 regulation in bacteria.

Predicted ring nucleases

Recent analysis of the CARF superfamily has led to identi-
fication of several genes which are expected to comprise

new ring nuclease families (Makarova et al. 2020b).
Namely, Csx16, Csx20, and Unk_01 have been identified
to contain polar resides (histidine, arginine, and aspartate
or glutamate) compatible with ring nuclease function
(Makarova et al. 2020b). Csx16 and Csx20 share sequence
identity, and Csx16 has been noted as partially similar to
the DUF1874 protein family which comprises both AcrIII-1
and Crn2, suggesting homology with viral ring nucleases
(Makarova et al. 2020b). Csx16, Csx20, and Unk_01 have
also been detected fused to Csx1, and based on the char-
acterized MpiCsx1–Crn2 protein, such fusions are good
indicators of regulatory function. Csx14 is further predict-
ed to constitute a new ring nuclease family based on con-
servation of serine or threonine and lysine residues which
are crucial for cA4 cleavage in Crn1 enzymes (Makarova
et al. 2020b). On the other hand, additional cOA sensing
and/or degradative enzymes unrelated to the CARF and
DUF1874 protein families should not be ruled out.
Indeed, a membrane-associated DHH-DHHA1 (MAD)
family nuclease has recently been uncovered that nonspe-
cifically degrades cA4 (Zhao et al. 2020). In several cases,
CorA, which are associated with type III CRISPR systems
and anticipated to be cOA-activated membrane channels,
are found adjacent or fused to DHH family nucleases
(Shah et al. 2019), and it is possible that the DHH family
nuclease may cleave cOA to regulate the CorA
component.

PARALLELS BETWEEN CYCLIC
NUCLEOTIDE-BASED IMMUNE SYSTEMS
IN PROKARYOTES

Similar to type III CRISPR systems,CBASS systemsgenerate
cyclic nucleotide secondmessengers in response to stimuli
from phage infection (Fig. 4; for review, see Millman et al.
2020). Antiviral signaling by CBASS comprises a greater
repertoire of signals, which include cyclic nucleotides con-
taining noncanonical linkages (Lowey et al. 2020). CBASS
signals identified to date include cyclic GMP-AMP
(c-GAMP), cyclic di-GMP, cyclic UMP–UMP, cyclic UMP–
AMP, cyclic AMP–AMP–GMP, cA3, and cA4 (Cohen et al.
2019; Whiteley et al. 2019; Morehouse et al. 2020; Ye
et al. 2020a). These activate NucC and Cap4 DNases (Lau
et al. 2020; Lowey et al. 2020), as well as phospholipases
(Cohen et al. 2019) and NADases (Morehouse et al. 2020)
that are involved in precipitating cell death as mechanisms
of antiphage immunity. In the Cap4 enzyme, cA3 is recog-
nized by a SMODS associated and fused to various effec-
tors sensor domain (SAVED), which structural study
indicates is evolutionarily linked to the CARF family (Lowey
et al. 2020), and SAVED domain containing effectors are
also associated with several type III CRISPR systems (Shma-
kovet al. 2018).Manyof the characterizedCBASS-associat-
ed effectors are cytotoxic (Severin et al. 2018; Cohen et al.
2019; Lau et al. 2020), revealing another similarity between
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type III CRISPR and CBASS immune responses. Indeed,
when type III CRISPR-Cas and CBASS co-occur, cOA syn-
thesized by one or the other system might cross-activate
ancillaryeffectors associatedwith either system. Important-
ly, it remains to be elucidated whether CBASS systems
function exclusively via abortive infection, or if as of yet un-
identified ring nucleases or regulatory mechanisms play a
role in deactivating these systems.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

cOA signaling by type III CRISPR complexes to activate
downstream effectors and eliminate foreign intruders rep-
resents a highly potent antiviral defense strategy. Ring nu-
cleases are a crucial component in this pathway and
deactivate CRISPR ancillary enzymes by degrading cOA.

B

A

FIGURE 4. Comparisons of cyclic nucleotide-based immune systems in prokaryotes. (A) Protein Data Bank (PDB) identifiers are shown alongside
all structures. Type III CRISPR immunity comprises four key components; a detection and signaling platform, cyclic nucleotide signals, ancillary
signal sensors fused to effectors, and mechanisms to eliminate the signal. The type III CRISPR complex detects viral mRNA, and the Cas10 nucle-
otidyl cyclase generates cyclic oligoadenylates (cOA; cAn, n=3–6) containing 3′–5′ phosphodiester linkages. cOA allosterically stimulates down-
stream CRISPR ancillary effector proteins, typically by binding to a CRISPR-associated Rossmann fold (CARF) domain (colored in marine and light
blue in protein dimers). Finally, ring nucleases eliminate cOA and deactivate CRISPR ancillary effectors, controlling the immune response. Some
ring nucleases areCARF family proteins, whereas others have unique cOA sensing domains. Viruses encode variant ring nucleases (AcrIII-1), which
rapidly degrade cOA and suppress the type III CRISPR immune response. In some bacteria, AcrIII-1 is found associated with type III CRISPR sys-
tems and has been termed Crn2 because it appears to be harnessed by bacteria to regulate CRISPR immunity. (B) The cyclic oligonucleotide-
based antiphage signaling system (CBASS) resembles the type III CRISPR immune system in some respects. The cyclase (CdnE) is activated by
unknown stimuli during phage infection, and different CdnE proteins synthesize different cyclic nucleotide molecules which activate downstream
effector proteins. CBASS can synthesize cyclic nucleotides containing both 3′–5′ and 2′–5′ phosphodiester linkages, giving rise to an enormous
repertoire of possible cyclic nucleotide signals. These signals are detected by distinct protein domains, including the SMODS associated and
fused to various effectors sensor domain (SAVED), which is evolutionarily linked to the CARF domain. Although ring nucleases may degrade
cA4, no prokaryotic enzymes have been identified that degrade any of the other cyclic nucleotide signals generated by CBASS. Some CBASS
systems may function exclusively via abortive infection, whereas others may have novel regulatory mechanisms.
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CARF family ring nucleases exhibit significant sequence
variation, highlighting convergent evolution on a crucial
catalytic function. From a microbiological standpoint,
ring nucleases are undoubtedly important, this is empha-
sized by MGEs that use ring nucleases as anti-immune
weaponry. By eliminating extant cOA, ring nucleases
have the potential to regulate diverse cOA-activated effec-
tors, including putative proteases, RelE RNases predicted
to cleave mRNA at ribosomes, and WYL-domain contain-
ing transcription regulators that may promote antiviral
immunity and/or cell recovery (Makarova et al. 2014;
Shmakov et al. 2018; Shah et al. 2019). While rapid pro-
gress has been made in understanding cOA signaling,
many cOA-activated enzymes await biochemical study,
and some may be particularly useful for biotechnological
applications. For example, Csm6 has been used to cleave
reporter molecules as a second amplification step in sever-
al diagnostic assays (Gootenberg et al. 2017, 2018),
including in recent studies using type III CRISPR-Cas
systems and cOA signaling as viral RNA diagnostic plat-
forms (Santiago-Frangos et al. 2020; Steens et al. 2021).
Likewise, newly predicted ring nucleases based on CARF
superfamily analysis may harbor new catalytic mechanisms
of broad interest to enzymology.
Importantly, the discovery of cOA elimination by ring nu-

cleases should not exclude consideration of other fates for
cOA, such as the possibility that cOA is used to warn neigh-
boring cells of infection. cOA may be disseminated within
bacterial aggregates such as biofilms by the action of efflux
and influx transporters or accompanying cell lysis. For exam-
ple, L.monocytogenes is known to secrete the secondmes-
senger c-di-AMP using amultidrug efflux pump (Woodward
et al. 2010). Inmammals, 2′,3′-cGAMP synthesized by cGAS
(cyclic GMP-AMP synthase) is disseminated between cells
via gap junctions and confer immunity to bystander cells
(Ablasser et al. 2013). cGAS detects cytosolic DNA and syn-
thesizes 2′,3′-cGAMP,which stimulates STING (stimulator of
interferon genes) signalosome assembly and downstream
stimulation of transcription regulators critical to the antiviral
interferon response (Ishikawa et al. 2009; Sun et al. 2013).
2′,3′-cGAMP has also been found packaged into virions,
whereby its transfer into newly infected cells triggers
STING-dependent innate immunity (Bridgeman et al.
2015; Gentili et al. 2015). As cOA levels reach high µM con-
centrations during infection (Smalakyte et al. 2020), cOA
may similarly accumulate in new virions and serve to accel-
erate immune activation in newly infected cells. Accelerated
immune activation would be highly advantageous because
type III CRISPR immunity is transcription-dependent and ef-
fective during middle to late viral gene expression (Deng
et al. 2013; Goldberg et al. 2014; Tamulaitis et al. 2014;
Samai et al. 2015).
Mobile genetic elements are known to encode multiple

anti-CRISPR proteins to inhibit the same CRISPR-Cas sys-
tem (Bondy-Denomy et al. 2013; Pawluk et al. 2014). In ad-

dition to AcrIII-1, Sulfolobus islandicus rod-shaped virus 2
(SIRV2) encodes AcrIIIB1, a small protein that binds the S.
islandicus LAL14/1 type III-B Cmr complex and blocks cOA
synthesis (Bhoobalan-Chitty et al. 2019). However, AcrIIIB1
is subtype-specific, whereas AcrIII-1 is effective against any
type III subtype that uses cA4 as a second messenger
(Athukoralage et al. 2020b). Consequently, AcrIII-1 may
drive type III CRISPR systems to select alternative cOA ac-
tivators to precipitate the immune response. As AcrIII-1 is
cA4-specific (Athukoralage et al. 2020b), viral enzymes
that degrade cA3 and cA6 are highly anticipated. In turn,
cyclic nucleotide-based immune systems may protect sig-
nals by synthesizing cyclic nucleotides containing nonca-
nonical linkages, as seen for CBASS systems (Lowey et al.
2020), that may be resistant to cleavage by virus encoded
nucleases. Thus, the continued study of cyclic nucleotide-
based immune systems, particularly under viral selection,
should provide valuable insights into the dynamics of vi-
rus-host coevolution, and uncover further troves of natural
products and novel enzymes.
Interestingly, similar to MGEs targeting prokaryotes, eu-

karyotic viruses use second messenger degradative en-
zymes, indicating that it is a widely effective immune
evasion strategy. Poxviridae that infect eukaryotes produce
a 2′,3′-cGAMP phosphodiesterase, termed poxvirus im-
mune nuclease or poxin, which interferes with cGAS-
STING immunity (Eaglesham et al. 2019). Furthermore,
mirroring bacterial co-option of AcrIII-1 homologs,
Lepidoptera (moths and butterflies) encode poxin homo-
logs that degrade 2′,3′-cGAMP (Eaglesham et al. 2019).
Phosphodiesterases that degrade 2′,3′-cGAMP have not
yet been identified in a eukaryotic cell cytoplasm, therefore
akin to acquisition of AcrIII-1 by bacteria, Lepidopterans
may have acquired poxins from viruses in order to regulate
cGAS-STING immunity. Considering current knowledge of
cyclic nucleotide-based virus-host conflicts, eukaryotic vi-
ruses are the best studied and are known to harbor diverse
mechanisms that block and counteract antiviral signaling.
For example, eukaryotic viruses are known to shield DNA
to prevent detection by cGAS (Lahaye et al. 2013; Sun
et al. 2015), degrade cGAS using proteases (Aguirre et al.
2017), prevent cyclic nucleotide synthesis by disabling
DNA sensing or promoting DNA dissociation (Wu et al.
2015; Biolatti et al. 2018; Huang et al. 2018a,b), and inhibit
various stages of downstream signaling by proteolytic deg-
radation of STING (Aguirre et al. 2012; Ding et al. 2018). It is
likely that prokaryotic viruses adopt similar strategies to in-
hibit different stages of the type III CRISPR pathway, and
continued study of virus-host interactions promises to yield
exciting discoveries at every turn.
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