5 research outputs found

    Did mangroves offer an effective barrier to the Thane cyclone surges?

    Get PDF
    Mangrove ecosystems support vital wetland communities of plants and animals. They are characterized by unique species of trees and shrubs that fringe the intertidal zone along sheltered coastal, estuarine and riverine areas in tropical and subtropical latitudes. Mangroves have played an important role in the economy of our coastal population for thousands of years, providing a variety of goods and services, including wood production, support for commercial and subsistence fisheries, aquaculture, salt production, and coastal erosion control

    Hybrid SFNet Model for Bone Fracture Detection and Classification Using ML/DL

    Get PDF
    An expert performs bone fracture diagnosis using an X-ray image manually, which is a time-consuming process. The development of machine learning (ML), as well as deep learning (DL), has set a new path in medical image diagnosis. In this study, we proposed a novel multi-scale feature fusion of a convolution neural network (CNN) and an improved canny edge algorithm that segregate fracture and healthy bone image. The hybrid scale fracture network (SFNet) is a novel two-scale sequential DL model. This model is highly efficient for bone fracture diagnosis and takes less computation time compared to other state-of-the-art deep CNN models. The innovation behind this research is that it works with an improved canny edge algorithm to obtain edges in the images that localize the fracture region. After that, grey images and their corresponding canny edge images are fed to the proposed hybrid SFNet for training and evaluation. Furthermore, the performance is also compared with the state-of-the-art deep CNN models on a bone image dataset. Our results showed that SFNet with canny (SFNet + canny) achieved the highest accuracy, F1-score and recall of 99.12%, 99% and 100%, respectively, for bone fracture diagnosis. It showed that using a canny edge algorithm improves the performance of CNN

    Voting Rule Based Cellular Automata Epidemic Spread Model for Leptospirosis

    Get PDF
    The first type in Compartmental model-the SIR model proposed by Kermack and Mckendrick in 1927 consists of only human population1. Leptospirosis has two groups of population namely humans and animals, the latter bein

    Hybrid SFNet Model for Bone Fracture Detection and Classification Using ML/DL

    No full text
    An expert performs bone fracture diagnosis using an X-ray image manually, which is a time-consuming process. The development of machine learning (ML), as well as deep learning (DL), has set a new path in medical image diagnosis. In this study, we proposed a novel multi-scale feature fusion of a convolution neural network (CNN) and an improved canny edge algorithm that segregate fracture and healthy bone image. The hybrid scale fracture network (SFNet) is a novel two-scale sequential DL model. This model is highly efficient for bone fracture diagnosis and takes less computation time compared to other state-of-the-art deep CNN models. The innovation behind this research is that it works with an improved canny edge algorithm to obtain edges in the images that localize the fracture region. After that, grey images and their corresponding canny edge images are fed to the proposed hybrid SFNet for training and evaluation. Furthermore, the performance is also compared with the state-of-the-art deep CNN models on a bone image dataset. Our results showed that SFNet with canny (SFNet + canny) achieved the highest accuracy, F1-score and recall of 99.12%, 99% and 100%, respectively, for bone fracture diagnosis. It showed that using a canny edge algorithm improves the performance of CNN

    Energy Aware Load Balancing Framework for Smart Grid Using Cloud and Fog Computing

    No full text
    Data centers are producing a lot of data as cloud-based smart grids replace traditional grids. The number of automated systems has increased rapidly, which in turn necessitates the rise of cloud computing. Cloud computing helps enterprises offer services cheaply and efficiently. Despite the challenges of managing resources, longer response plus processing time, and higher energy consumption, more people are using cloud computing. Fog computing extends cloud computing. It adds cloud services that minimize traffic, increase security, and speed up processes. Cloud and fog computing help smart grids save energy by aggregating and distributing the submitted requests. The paper discusses a load-balancing approach in Smart Grid using Rock Hyrax Optimization (RHO) to optimize response time and energy consumption. The proposed algorithm assigns tasks to virtual machines for execution and shuts off unused virtual machines, reducing the energy consumed by virtual machines. The proposed model is implemented on the CloudAnalyst simulator, and the results demonstrate that the proposed method has a better and quicker response time with lower energy requirements as compared with both static and dynamic algorithms. The suggested algorithm reduces processing time by 26%, response time by 15%, energy consumption by 29%, cost by 6%, and delay by 14%
    corecore