44 research outputs found

    Modeling charge transport in Swept Charge Devices for X-ray spectroscopy

    Full text link
    We present the formulation of an analytical model which simulates charge transport in Swept Charge Devices (SCDs) to understand the nature of the spectral redistribution function (SRF). We attempt to construct the energy-dependent and position dependent SRF by modeling the photon interaction, charge cloud generation and various loss mechanisms viz., recombination, partial charge collection and split events. The model will help in optimizing event selection, maximize event recovery and improve spectral modeling for Chandrayaan-2 (slated for launch in 2014). A proto-type physical model is developed and the algorithm along with its results are discussed in this paper.Comment: 9 pages, 7 figures, Proc. SPIE 8453, High Energy, Optical, and Infrared Detectors for Astronomy

    Simulating charge transport to understand the spectral response of Swept Charge Devices

    Get PDF
    Context. Swept Charge Devices (SCD) are novel X-ray detectors optimized for improved spectral performance without any demand for active cooling. The Chandrayaan-1 X-ray Spectrometer (C1XS) experiment onboard the Chandrayaan-1 spacecraft used an array of SCDs to map the global surface elemental abundances on the Moon using the X-ray fluorescence (XRF) technique. The successful demonstration of SCDs in C1XS spurred an enhanced version of the spectrometer on Chandrayaan-2 using the next-generation SCD sensors. Aims. The objective of this paper is to demonstrate validation of a physical model developed to simulate X-ray photon interaction and charge transportation in a SCD. The model helps to understand and identify the origin of individual components that collectively contribute to the energy-dependent spectral response of the SCD. Furthermore, the model provides completeness to various calibration tasks, such as generating spectral response matrices (RMFs - redistribution matrix files), estimating efficiency, optimizing event selection logic, and maximizing event recovery to improve photon-collection efficiency in SCDs. Methods. Charge generation and transportation in the SCD at different layers related to channel stops, field zones, and field-free zones due to photon interaction were computed using standard drift and diffusion equations. Charge collected in the buried channel due to photon interaction in different volumes of the detector was computed by assuming a Gaussian radial profile of the charge cloud. The collected charge was processed further to simulate both diagonal clocking read-out, which is a novel design exclusive for SCDs, and event selection logic to construct the energy spectrum. Results. We compare simulation results of the SCD CCD54 with measurements obtained during the ground calibration of C1XS and clearly demonstrate that our model reproduces all the major spectral features seen in calibration data. We also describe our understanding of interactions at different layers of SCD that contribute to the observed spectrum. Using simulation results, we identify the origin of different spectral features and quantify their contributions

    X-ray Evaluation of the Marshall Grazing Incidence X-Ray Spectrometer (MaGIXS) Nickel-Replicated Mirrors

    Get PDF
    X-ray observations of astronomical objects provides diagnostics not available in any other wavelength regime, however the capability of making these observation at a high spatial resolution has proven challenging. Recently, NASA Marshall Space Flight Center (MSFC) has made good progress in employing computer numerical control (CNC) polishing techniques on electroless nickel mandrels as part of our replicated grazing incidence optics program. CNC polishing has afforded the ability to deterministically refine mandrel figure, thereby improving mirror performance. The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a MSFC-led sounding rocket instrument that is designed to make the first ever soft x-ray spectral observations of the Sun spatially resolved along a narrow slit. MaGIXS incorporates some of the first mirrors produced at MSFC using this polishing technique. Here we present the predicted mirror performance obtained from metrology, after completion of CNC polishing, as well as the results of X-ray tests performed on the MaGIXS telescope mirror before and after mounting
    corecore