8 research outputs found

    CGEF-1 regulates mTORC1 signaling during adult longevity and stress response in

    Get PDF
    The mechanistic target of rapamycin (mTOR) kinase is central to metabolism and growth, and has a conserved role in aging. mTOR functions in two complexes, mTORC1 and mTORC2. In diverse eukaryotes, inhibition of mTORC1 signaling increases lifespan. mTORC1 transduces anabolic signals to stimulate protein synthesis and inhibits autophagy. In this study, we demonstrate that CGEF-1, theC. eleganshomolog of the human guanine nucleotide exchange factor Dbl, is a novel binding partner of RHEB-1 and activator of mTORC1 signaling inC. elegans.cgef-1mutants display prolonged lifespan and enhanced stress resistance. The transcription factors DAF-16/FoxO and SKN-1/Nrf are required for increased longevity and stress tolerance, and induce protective gene expression incgef-1mutants. Genetic evidence indicates thatcgef-1functions in the same pathway withrheb-1, the mTOR kinaselet-363, anddaf-15/Raptor. Whencgef-1is inactivated, phosphorylation of 4E-BP, a central mTORC1 substrate for protein translation is reduced inC. elegans. Moreover, autophagy is increased uponcgef-1and mTORC1 inhibition. In addition, we show that in human cells Dbl associates with Rheb and stimulates mTORC1 downstream targets for protein synthesis suggesting that the function of CGEF-1/Dbl in the mTORC1 signaling pathway is evolutionarily conserved. These findings have important implications for mTOR functions and signaling mechanisms in aging and age-related diseases

    SCD5 Regulation by VHL Affects Cell Proliferation and Lipid Homeostasis in ccRCC

    Full text link
    Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cancer, and inactivation of the VHL tumor suppressor gene is found in almost all cases of hereditary and sporadic ccRCCs. CcRCC is associated with the reprogramming of fatty acid metabolism, and stearoyl-CoA desaturases (SCDs) are the main enzymes controlling fatty acid composition in cells. In this study, we report that mRNA and protein expression of the stearoyl-CoA desaturase SCD5 is downregulated in VHL-deficient cell lines. Similarly, in C. elegans vhl-1 mutants, FAT-7/SCD5 activity is repressed, supporting an evolutionary conservation. SCD5 regulation by VHL depends on HIF, and loss of SCD5 promotes cell proliferation and a metabolic shift towards ceramide production. In summary, we identify a novel regulatory function of VHL in relation to SCD5 and fatty acid metabolism, and propose a new mechanism of how loss of VHL may contribute to ccRCC tumor formation and progression

    Eculizumab as a treatment for C3 glomerulopathy: a single-center retrospective study

    No full text
    Abstract Background C3 Glomerulopathy (C3G) is a rare glomerular disease caused by dysregulation of the complement pathway. Based on its pathophysiology, treatment with the monoclonal antibody eculizumab targeting complement C5 may be a therapeutic option. Due to the rarity of the disease, observational data on the clinical response to eculizumab treatment is scarce. Methods Fourteen patients (8 female, 57%) treated for C3 glomerulopathy at the medical center of the University of Freiburg between 2013 and 2022 were included. Subjects underwent biopsy before enrollment. Histopathology, clinical data, and response to eculizumab treatment were analyzed. Key parameters to determine the primary outcome were changes of estimated glomerular filtration rate (eGFR) over time. Positive outcome was defined as > 30% increase, stable outcome as ±30%, negative outcome as decrease > 30% of eGFR. Results Eleven patients (78.8%) were treated with eculizumab, three received standard of care (SoC, 27.2%). Median follow-up time was 68 months (IQR: 45–98 months). Median eculizumab treatment duration was 10 months (IQR 5–46 months). After eculizumab treatment, five patients showed a stable outcome, six patients showed a negative outcome. Among patients receiving SoC, one patient showed a stable outcome, two patients showed a negative outcome. Conclusions The benefit of eculizumab in chronic progressive C3 glomerulopathy is limited

    CGEF-1 regulates mTORC1 signaling during adult longevity and stress response in

    Get PDF
    The mechanistic target of rapamycin (mTOR) kinase is central to metabolism and growth, and has a conserved role in aging. mTOR functions in two complexes, mTORC1 and mTORC2. In diverse eukaryotes, inhibition of mTORC1 signaling increases lifespan. mTORC1 transduces anabolic signals to stimulate protein synthesis and inhibits autophagy. In this study, we demonstrate that CGEF-1, theC. eleganshomolog of the human guanine nucleotide exchange factor Dbl, is a novel binding partner of RHEB-1 and activator of mTORC1 signaling inC. elegans.cgef-1mutants display prolonged lifespan and enhanced stress resistance. The transcription factors DAF-16/FoxO and SKN-1/Nrf are required for increased longevity and stress tolerance, and induce protective gene expression incgef-1mutants. Genetic evidence indicates thatcgef-1functions in the same pathway withrheb-1, the mTOR kinaselet-363, anddaf-15/Raptor. Whencgef-1is inactivated, phosphorylation of 4E-BP, a central mTORC1 substrate for protein translation is reduced inC. elegans. Moreover, autophagy is increased uponcgef-1and mTORC1 inhibition. In addition, we show that in human cells Dbl associates with Rheb and stimulates mTORC1 downstream targets for protein synthesis suggesting that the function of CGEF-1/Dbl in the mTORC1 signaling pathway is evolutionarily conserved. These findings have important implications for mTOR functions and signaling mechanisms in aging and age-related diseases

    The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4

    No full text
    The molecular basis of nephronophthisis, the most frequent genetic cause of renal failure in children and young adults, and its association with retinal degeneration and cerebellar vermis aplasia in Joubert syndrome are poorly understood. Using positional cloning, we here identify mutations in the gene CEP290 as causing nephronophthisis. It encodes a protein with several domains also present in CENPF, a protein involved in chromosome segregation. CEP290 (also known as NPHP6) interacts with and modulates the activity of ATF4, a transcription factor implicated in cAMP-dependent renal cyst formation. NPHP6 is found at centrosomes and in the nucleus of renal epithelial cells in a cell cycle-dependent manner and in connecting cilia of photoreceptors. Abrogation of its function in zebrafish recapitulates the renal, retinal and cerebellar phenotypes of Joubert syndrome. Our findings help establish the link between centrosome function, tissue architecture and transcriptional control in the pathogenesis of cystic kidney disease, retinal degeneration, and central nervous system development

    The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4

    No full text
    The molecular basis of nephronophthisis, the most frequent genetic cause of renal failure in children and young adults, and its association with retinal degeneration and cerebellar vermis aplasia in Joubert syndrome are poorly understood. Using positional cloning, we here identify mutations in the gene CEP290 as causing nephronophthisis. It encodes a protein with several domains also present in CENPF, a protein involved in chromosome segregation. CEP290 (also known as NPHP6) interacts with and modulates the activity of ATF4, a transcription factor implicated in cAMP-dependent renal cyst formation. NPHP6 is found at centrosomes and in the nucleus of renal epithelial cells in a cell cycle-dependent manner and in connecting cilia of photoreceptors. Abrogation of its function in zebrafish recapitulates the renal, retinal and cerebellar phenotypes of Joubert syndrome. Our findings help establish the link between centrosome function, tissue architecture and transcriptional control in the pathogenesis of cystic kidney disease, retinal degeneration, and central nervous system development
    corecore