27 research outputs found

    A New Marine Species of Amphidinium (Dinophyceae) from Thermaikos Gulf, Greece

    Get PDF
    Genus Amphidinium Claparède et Lachmann (Gymnodiniales, Dinophyceae) sensu lato has recently undergone a reappraisal using extended microscopical methods and genetic comparisons, with the type species and morphologically similar species used for the redescription of the genus Amphidinium sensu stricto. Within the latter concept of the genus, the new species Amphidinium thermaeum is established using light and scanning electron microscopy in combination with LSU rDNA phylogeny. This species was isolated from the Thermaikos Gulf in Greece, and its description is largely based on observations of cultured material. The main diacritic features distinguishing A. thermaeum from related taxa were: shape, size and plasticity of the cell, position of distal and proximal cingulum ends, site of longitudinal flagellar insertion, sulcal course, pusule details, plastid characteristics, and mode of cell division. Genetic phylogeny applying Bayesian Inference, Maximum Likelihood, and Neighbor-Joining analyses, places A. thermaeum in an independent position within the Amphidinium sensu stricto monophyletic group, and the new species is closely related to its small and morphologically similar siblings (A. massartii, A. klebsii, A. trulla, A. gibbosum, A. carterae)

    Morfología y filogenia del rDNA de una subespecie mediterránea de Coolia Monotis (Dinophyceae) de Grecia

    Get PDF
    Sequences of LSU and SSU ribosomal RNA genes and phylogeny have not been widely investigated for the dinoflagellate Coolia monotis Meunier, and no information is available on the small and large rDNA subunits of Mediterranean strains. A strain isolated from the Thermaikos Gulf in northern Greece was identified as C. monotis—a new record for the Greek algal flora—using thecal morphology by light, epifluorescence and scanning electron microscopy. The small subunit and partial (D1/D2) large subunit sequences were analyzed and compared to other strains of C. monotis and dinoflagellates from various regions. Thecal architecture showed that the Greek strain of C. monotis was phenotypically similar, but not identical, to other strains reported in literature. The partial LSU sequence (700 bp) was found to vary by 113 bp positions (16%) from the C. monotis strain from New Zealand, whereas the SSU (1757 bp) had 15 bp differences (0.85%) from the strain from Norway. Phylogenetic tree construction showed that the Greek strain fell within the Coolia clade and had a close relationship with the families Ostreopsidaceae and Goniodomaceae of the order Gonyaulacales. Preliminary findings suggest the existence of different genotype strains of C. monotis with large intraspecific genetic variability and minimal morphological differentiation (similar phenotypes). Certain ecological and evolutionary implications of these findings are discussed.Las secuencias de los genes del RNA de las subunidades ribosomales grandes y pequeñas (LSU y SSU, respectivamente) y la filogenia del dinoflagelado Coolia monotis Meunier han sido poco investigadas, y no hay información disponible sobre los genes LSU y SSU de subespecies mediterráneas. Una subespecie aislada del golfo de Thermaikos en el norte de Grecia fue identificada como C. monotis –una nueva aportación a la flora algal griega– por medio de la morfología de la teca observada a través de microscopía óptica, de epifluorescia y electrónica. Las secuencias correspondientes a la subunidad pequeña y a la parte (D1/D2) de la subunidad grande fueron analizadas y comparadas a las de otras subespecies de C. monotis y otras especies de dinoflagelados de diversas regiones. La arquitectura de la teca mostró que la subespecie griega de C. monotis era fenotípicamente similar, pero no idéntica, a otras subespecies registradas en la literatura. Se encontró que la secuencia parcial de la LSU (700 pares de bases o bp) difería de la de C. monotis de Nueva Zelanda en las posiciones de 113 bp (16%), mientras que la SSU (1757 bp) se diferenciaba en 15 bp (0.85%) de la subespecie de Noruega. La construcción del árbol filogenetico demostró que la subespecie griega se situaba dentro de la rama de Coolia y presentaba una relación cercana con las familias Ostreopsidaceae y Goniodomaceae del orden Gonyaulacales. Resultados preliminares sugieren la existencia de diversos genotipos de la subespecie de C. monotis con una importante variabilidad genética intraespecífica y una mínima diferenciación morfológica (fenotipos similares). Se comentan diversas implicaciones ecológicas y evolutivas de estos resultados

    Description of Aliinostoc alkaliphilum sp. nov. (Nostocales, Cyanobacteria), a New Bioactive Metabolite-Producing Strain from Salina Verde (Pantanal, Brazil) and Taxonomic Distribution of Bioactive Metabolites in Nostoc and Nostoc-like Genera

    Get PDF
    Cyanobacteria are a group of oxygenic photosynthetic prokaryotes found in almost all habitats on earth including those characterized as extreme environments. It has been observed that the number of studies dealing with the biodiversity of extremophilic cyanobacteria is limited while studies exploring their bioactive potential are even scarcer. The taxonomy of three Nostoc-like cyanobacterial strains isolated from a shallow lake in Brazil was studied by applying a polyphasic approach. The bioactive potential of the strains was also evaluated using antimicrobial susceptibility testing. The metabolites present in the bioactive HPLC fractions were identified by UPLC/ESI/Q-TOF. Based on our phylogenetic inferences in combination with morphological and ecological information, we describe Aliinostoc alkaliphilum sp. nov., exhibiting antibacterial and antifungal activities. The main bioactive metabolite in all three strains was nocuolin A, which represents the first report of this metabolite in Aliinostoc. Our phylogenetic studies also revealed that many bioactive metabolite-producting strains that are currently assigned to Nostoc belong to other distinct evolutionary lineages. These findings highlight the importance of polyphasic approach studies in both cyanobacterial taxonomy and natural product discovery programs

    Nitrogen as the main driver of benthic diatom composition and diversity in oligotrophic coastal systems

    Get PDF
    Phytoplankton is the main indicator group for eutrophication in coastal ecosystems, however its high dispersal potential does not enable the assessment of localized effects of coastal nutrient enrichment. Benthic diatoms are sessile microalgae associated with sandy substrates and have the potential to reflect more localized pollution impacts. Although benthic diatoms are widely used bioindicators in freshwater systems, they have rarely been used for assessing the eutrophication status of oligotrophic environments such as the eastern Mediterranean Sea. In the present study, we assess the efficiency of benthic diatoms as bioindicators of nutrient enrichment in oligotrophic coastal systems, by investigating the effect of different physicochemical conditions and nutrient concentrations on the assemblage composition, diversity and individual species populations. To do this, we sampled along a eutrophication gradient formed by anthropogenic nutrient inputs from a metropolitan area. The main driver of assemblage composition, diversity and biomass of diatoms was nitrogen concentration and its temporal and spatial changes. Nitrogen loadings were positively correlated with increased biomass of Cocconeis spp. and negatively correlated with Mastogloia spp. Our findings suggest that in coastal ecosystems of oligotrophic marine ecoregions, benthic diatom assemblage structure and specific taxonomic groups can be reliable predictors of coastal eutrophication offering higher spatial resolution compared to phytoplankton

    Implementation of the Water Framework Directive: Lessons Learned and Future Perspectives for an Ecologically Meaningful Classification Based on Phytoplankton of the Status of Greek Lakes, Mediterranean Region

    Get PDF
    The enactment of the Water Framework Directive (WFD) initiated scientific efforts to develop reliable methods for comparing prevailing lake conditions against reference (or nonimpaired) states, using the state of a set biological elements. Drawing a distinction between impaired and natural conditions can be a challenging exercise. Another important aspect is to ensure that water quality assessment is comparable among the different Member States. In this context, the present paper offers a constructive critique of the practices followed during the WFD implementation in Greece by pinpointing methodological weaknesses and knowledge gaps that undermine our ability to classify the ecological quality of Greek lakes. One of the pillars of WDF is a valid lake typology that sets ecological standards transcending geographic regions and national boundaries. The national typology of Greek lakes has failed to take into account essential components. WFD compliance assessments based on the descriptions of phytoplankton communities are oversimplified and as such should be revisited. Exclusion of most chroococcal species from the analysis of cyanobacteria biovolume in Greek lakes/reservoirs and most reservoirs in Spain, Portugal, and Cyprus is not consistent with the distribution of those taxa in lakes. Similarly, the total biovolume reference values and the indices used in classification schemes reflect misunderstandings of WFD core principles. This hampers the comparability of ecological status across Europe and leads to quality standards that are too relaxed to provide an efficient target for the protection of Greek/transboundary lakes such as the ancient Lake Megali Prespa

    Meloneis Gen. Nov., a New Epipsammic Genus of Rhaphoneidaceae (Bacillariophyceae)

    Get PDF
    The diatom family Rhaphoneidaceae is characterized by high generic diversity and low species diversity with most genera known to have long stratigraphic ranges. The genera within this family are neritic marine, and mostly epipsammic. A new modern and epipsammic genus, Meloneis gen. nov., is described herein and is compared to all genera within Rhaphoneidaceae and especially to Rhaphoneis Ehrenberg s.l. Within Meloneis three new species and one variety are distinguished and described herein: M. mimallis sp. nov., M. mimallis var. zephyria var. nov., M. akytos sp. nov., and M. gorgis sp. nov

    IN MEMORIAM

    No full text

    A New Marine Species of Amphidinium (Dinophyceae) from Thermaikos Gulf, Greece

    No full text
    Genus Amphidinium Claparède et Lachmann (Gymnodiniales, Dinophyceae) sensu lato has recently undergone a reappraisal using extended microscopical methods and genetic comparisons, with the type species and morphologically similar species used for the redescription of the genus Amphidinium sensu stricto. Within the latter concept of the genus, the new species Amphidinium thermaeum is established using light and scanning electron microscopy in combination with LSU rDNA phylogeny. This species was isolated from the Thermaikos Gulf in Greece, and its description is largely based on observations of cultured material. The main diacritic features distinguishing A. thermaeum from related taxa were: shape, size and plasticity of the cell, position of distal and proximal cingulum ends, site of longitudinal flagellar insertion, sulcal course, pusule details, plastid characteristics, and mode of cell division. Genetic phylogeny applying Bayesian Inference, Maximum Likelihood, and Neighbor-Joining analyses, places A. thermaeum in an independent position within the Amphidinium sensu stricto monophyletic group, and the new species is closely related to its small and morphologically similar siblings (A. massartii, A. klebsii, A. trulla, A. gibbosum, A. carterae)
    corecore