159 research outputs found

    Effects of Short Exposures to Spinosad-Treated Wheat or Maize on Four Stored-Grain Insects

    Get PDF
    The effect of short exposures to spinosad-treated wheat, Triticum aestivum L., or maize, Zea mays L., was evaluated against adults of four stored-product insect species: lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae); rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae); red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae); and the psocid Lepinotus reticulatus (Enderlein) (Psocoptera: Trogiidae). Adult mortality of these species was recorded after 0, 2, 4, 8, 16, and 40 h on commodities treated with 1ppm of spinosad (immediate mortality). Then, the surviving individuals were removed and placed on untreated wheat or maize, and mortality was recorded again 7 d later (delayed mortality). Progeny production then was determined 65 and 35 d later for the beetles and psocids, respectively. Among the four species tested, R. dominica was the most susceptible, and immediate mortality after 40 h reached 78 and 72% on wheat and maize, respectively. Moreover, 7 d later, all adults that had been exposed for \u3e2 h were dead on both commodities. Progeny production was significantly reduced in comparison with the controls, and no progeny were found when parental adults had been exposed for \u3e8 or \u3e4 h on wheat and maize, respectively. For S. oryzae, 40-h exposures significantly increased delayed mortality on both wheat and maize, but progeny production still was high. Generally, no effect of short exposures was noted for T. castaneum. For L. reticulatus, despite the fact that the increase of exposure interval increased mortality on maize,progeny production was not avoided.With the exception of T.castaneum, more progeny were found on wheat than on maize. The results of the current study indicate that R. dominica is very susceptible after short exposures to spinosad-treated substrate, but the other species are able to survive and reproduce at the exposure range examined

    Efficacy of grain protectants against four psocid species onmaize, rice and wheat

    Get PDF
    BACKGROUND: Psocids are emerging pests in stored products, particularly in amylaceous commodities such as grains. Currently, their control is based on the use of fumigants and contact insecticides; however, newer data indicate that psocids are tolerant to insecticides used to control other stored-grain species. This study evaluated the insecticides registered in the USA for use on stored maize, rice and wheat for control of the psocid species Lepinotus reticulatus, Liposcelis entomophila, L. bostrychophila and L. paeta. Mortality of exposed adult females was recorded after 7 and 14 days of exposure, while progeny production was assessed after 30 days of exposure. RESULTS: On wheat and rice, chlorpyriphos-methyl + deltamethrin was generally more effective against exposed parental adults than spinosad or pyrethrin, while pirimiphos-methyl was more effective on maize than spinosad or pyrethrin. In most cases, progeny production was suppressed in the treated grains. Progeny production was consistently lowest on wheat and rice treated with chlorpyriphos-methyl+ deltamethrin and maize treated with pirimiphos-methyl. CONCLUSIONS: Chlorpyriphos-methyl+deltamethrin and pirimiphos-methyl were the most effective insecticides for all species and commodities. Conversely, efficacy of spinosad or pyrethrum was highly dependent on the psocid species and commodity

    Efficacy of layer treatment with methoprene for control of \u3ci\u3eRhyzopertha dominica\u3c/i\u3e (Coleoptera: Bostrychidae) on wheat, rice andmaize

    Get PDF
    BACKGROUND: Insect growth regulators are promising alternatives to traditional pesticides in stored grain. The efficacy of the juvenile hormone analogue methoprene was evaluated as a layer treatment in a laboratory experiment for control of Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) in wheat, rice and maize. RESULTS: Adults of R. dominica were placed in vials containing 33, 26 and 29 g (to a depth of 6.5 cm) of wheat, rice and maize, respectively, that was entirely or partially treated with 1, 5 or 10mg kg−1 methoprene. In wheat and rice, the layer treatments were not as effective as the whole-grain treatment, but there was decreased progeny production as the application rate increased. However, on maize the partial treatments were as effective as the whole-grain treatment at 5 and 10 mg kg−1. CONCLUSIONS: The results suggest that partial layer treatments with methoprene can be used to control R. dominica on maize but may not be effective for control of this species on wheat and rice

    Efficacy of Methoprene for Control of Five Species of Psocids (\u3ci\u3ePsocoptera\u3c/i\u3e) on Wheat, Rice, and Maize

    Get PDF
    The insect growth regulator methoprene was evaluated for control of Liposcelis bostrychophila Badonnel, Liposcelis decolor (Pearman), Liposcelis entomophila (Enderlein), Liposcelis paeta Pearman (Psocoptera: Liposcelididae), and Lepinotus reticulatus Enderlein (Trogiidae) at application rates of 1, 5, and 10 ppm on maize, wheat, and rice. Methoprene did not completely suppress progeny production during the 40-day test period, but did cause a significant reduction in adult progeny in all psocid species at the application rates of 5 and 10 ppm. At 1 ppm, numbers of adults were reduced for all species on wheat and maize, but only for L. paeta on rice. Nevertheless, the numbers of nymphs present after 40 days generally were not reduced, relative to the controls. Methoprene applied at rates of 1 to 10 ppm to stored grain would not provide adequate control of psocids

    Residual Efficacy of Chlorfenapyr for Control of Stored-Product Psocids (Psocoptera)

    Get PDF
    The residual effect of chlorfenapyr (Phantom) was evaluated for residual control of three stored-product psocid species: Liposcelis bostrychophila Badonnel, Liposcelis entomophila (Enderlein), and Liposcelis paeta Pearman (Psocoptera: Liposcelididae). Chlorfenapyr was applied to individual arenas with a concrete surface at rates of 0, 2.8, 13.8, 20.6, 27.5, 55, and 110 mg active ingredient (AI)/m2. Adults were exposed on the treated arenas and mortality assessed after 1, 2, and 3 d. The procedures were repeated weekly on the same treated arenas for 3 wk to assess residual efficacy. At each week, mortality of all species was low after 1 d of exposure but notably increased after 2 or 3 d. L. entomophila was the most susceptible species, with 99-100% mortality at rates of 13.8 mg/m2 or higher. Similarly, mortality of L. paeta after 3 d of exposure at the same concentration ranged from 92 to 100%. L. bostrychophila was the least susceptible species, with mortality of \u3c60% during the third week after application at rates ≤27.5 mg/m2. However, even for this species, mortality after 3 wk was 90% or higher at rates \u3e27.5 mg/m2. Complete mortality of all species occurred after 3 d exposure at the highest rate tested of 110 mg/m2. Thus, our results show that chlorfenapyr is effective against major psocid species at the application rates evaluated in this study

    Lesser grain borers, \u3ci\u3eRhyzopertha dominica\u3c/i\u3e, select rough rice kernels with cracked hulls for reproduction

    Get PDF
    Tests were conducted to determine whether the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae), selects rough rice (Oryza sativa L. (Poales: Poaceae)) kernels with cracked hulls for reproduction when these kernels are mixed with intact kernels. Differing amounts of kernels with cracked hulls (0, 5, 10, and 20%) of the varieties Francis and Wells were mixed with intact kernels, and the number of adult progeny emerging from intact kernels and from kernels with cracked hulls was determined. The Wells variety had been previously classified as tolerant to R. dominica, while the Francis variety was classified as moderately susceptible. Few F1 progeny were produced in Wells regardless of the percentage of kernels with cracked hulls, few of the kernels with cracked hulls had emergence holes, and little frass was produced from feeding damage. At 10 and 20% kernels with cracked hulls, the progeny production, number of emergence holes in kernels with cracked hulls, and the amount of frass was greater in Francis than in Wells. The proportion of progeny emerging from kernels with cracked hulls increased as the proportion of kernels with cracked hulls increased. The results indicate that R. dominica select kernels with cracked hulls for reproduction

    Modeling the distribution of phosphine in cylindrical grain silos with CFD methods for precision fumigation: Poster

    Get PDF
    In the present study, the distribution of phosphine gas in a cylindrical silo was modeled and compared with available sensor data. The cylindrical silo was filled with wheat and a recirculation system was used to enhance the diffusion of phosphine throughout the grain volume. A Computational Fluid Dynamics (CFD) model was developed with OpenFoam software, which accounted for gas transport in porous media and sorption effects of phosphine into the grain. A time-dependent source was used to model the phosphine release from Aluminum Phosphide bags. Furthermore, simulation results were obtained for insect mortality as a function of their exposure to phosphine gas. The phosphine concentration measurements were available from calibrated wireless sensors provided by Centaur Analytics, placed near the silo walls at various heights. As the agreement of phosphine measured data with the simulation results was satisfying, it led to considering that the proposed CFD model (equations, boundary conditions, grain properties, recirculation system approach, etc.) was accurate. Utilizing the capabilities of fumigation modeling, the phosphine concentration could then be determined for every location inside the storage volume and at any given time, thus a prediction method for fumigation duration and success could be enabled. Additionally, as the CFD model correlates phosphine exposure with insect mortality, a methodology for planning precision fumigations can now be established.In the present study, the distribution of phosphine gas in a cylindrical silo was modeled and compared with available sensor data. The cylindrical silo was filled with wheat and a recirculation system was used to enhance the diffusion of phosphine throughout the grain volume. A Computational Fluid Dynamics (CFD) model was developed with OpenFoam software, which accounted for gas transport in porous media and sorption effects of phosphine into the grain. A time-dependent source was used to model the phosphine release from Aluminum Phosphide bags. Furthermore, simulation results were obtained for insect mortality as a function of their exposure to phosphine gas. The phosphine concentration measurements were available from calibrated wireless sensors provided by Centaur Analytics, placed near the silo walls at various heights. As the agreement of phosphine measured data with the simulation results was satisfying, it led to considering that the proposed CFD model (equations, boundary conditions, grain properties, recirculation system approach, etc.) was accurate. Utilizing the capabilities of fumigation modeling, the phosphine concentration could then be determined for every location inside the storage volume and at any given time, thus a prediction method for fumigation duration and success could be enabled. Additionally, as the CFD model correlates phosphine exposure with insect mortality, a methodology for planning precision fumigations can now be established

    Insecticidal Effect of Diatomaceous Earth Against Three Species of Stored-Product Psocids on Maize, Rice, and Wheat

    Get PDF
    We evaluated the efficacy of three diatomaceous earth (DE) formulations, Dryacide, Protect-It, and Insecto, against three Psocoptera species, Liposcelis entomophila (Enderlein) (Liposcelididae), Lepinotus reticulatus Enderlein (Trogiidae), and Liposcelis decolor (Pearman), in the laboratory. Bioassays were conducted in three grain commodities, wheat, rice and maize, at 30°C and 75% RH, and the DEs were applied at the recommended dose rates of 1,000, 400, and 500 ppm for Dryacide, Protect-It, and Insecto, respectively. Differences in adult mortality were found among grains and DEs for L. entomophila and L. reticulatus, but these trends were not consistent for all combinations tested. Type of grain and DE did not affect L. decolor mortality significantly. Moreover, mortality increased with increasing exposure time for L. entomophila and L. reticulatus, but there was no effect of exposure time on L. decolor. After 7 d of exposure, mortalities of L. entomophila, L. reticulatus, and L. decolor were 56, 55, and 40%, respectively, and the respective mortality levels after 14 d were 63, 71, and 42%. Progeny production after 30 d was significantly suppressed for all species in the treated grains. However, progeny production was still high in the treated grains and reached 54, 42, and 76 individuals/10 g of grain for L. entomophila, L. reticulatus, and L. decolor, respectively. Progeny production did not vary with commodity. Our results suggest that DEs, when used alone, will not provide effective control of psocids

    Efficacy of Modified Atmospheres on Trogoderma granarium (Coleoptera: Dermestidae) and Sitophilus zeamais (Coleoptera: Curculionidae)

    Get PDF
    We investigated the efficacy of two types of modified atmospheres (MA) against adults of the khapra beetle, Trogoderma granarium Everts, and the maize weevil, Sitophilus zeamais Motschulsky, under laboratory conditions. Adults of the above species on wheat were exposed to a carbon dioxide (CO2) concentration of 70% or a low oxygen (O2) concentration of 0.1% for durations of 0.67 (16 h), 1, 2, 4, and 6 d and stored in an environmental chamber set at 28 ± 2°C, 70 ± 5% RH, and a photoperiod of 16:8 (L:D) h. After each exposure interval, immediate mortality and knockdown were recorded, and the surviving or knocked down individuals were transferred to normal atmospheres and returned to the environmental chamber, where survival was recorded 7 d later. In addition, after the immediate and delayed mortality counts, all adults were removed from the substrate, and the number of progeny produced was recorded 60 d later. Both MA conditions totally controlled (100% mortality) the adults of T. granarium and S. zeamais immediately after a 6-d exposure or after a 4-d exposure when delayed mortality was taken into account, showing the postexposure effect of the MA. Moreover, high CO2 was more effective than low O2 for S. zeamais, whereas the reverse was true for T. granarium. The 4-d exposure period was crucial for the production of progeny of both species because after that period surviving insects did not produce offspring. Our results show that both MA conditions can be used with success to control these species.info:eu-repo/semantics/acceptedVersio

    Efficacy of Spinetoram for the Control of Bean Weevil, Acanthoscelides obtectus (Say.) (Coleoptera: Chrysomelidae) on Different Surfaces

    Get PDF
    Simple Summary Contact toxicity of spinetoram on three different surfaces, concrete, ceramic floor tile and laminate flooring, against Acanthocelides obtectus (Say.) was evaluated in laboratory bioassays. Our results provide data on the insecticidal effect of spinetoram for the control of A. obtectus on various surfaces; however, its efficacy varies according to the surface type, exposure time and concentration. In conclusion, our laboratory tests indicated that spinetoram at 0.025 and 0.05 mg active ingredient (AI)/cm(2) achieved satisfactory control at relatively short exposures by contact action of A. obtectus adults on three surfaces, commonly encountered in legume storage facilities and warehouses. In this study, the contact toxicity of spinetoram on three different surfaces, concrete, ceramic floor tile and laminate flooring, against Acanthocelides obtectus (Say.) (Coleoptera: Chrysomelidae) was evaluated in laboratory bioassays. Different concentrations were evaluated ranging from 0.0025 to 0.05 mg AI/cm(2), against adults of A. obtectus. Adult mortality was measured after 1-, 3-, 5- and 7-day exposure. After 1-day exposure, the mortality was low on all surfaces, ranging from 0 to 27.2%. After 5- and 7-day exposure, spinetoram at concentrations of 0.01 mg/cm(2) and above achieved 100% or close mortality on concrete and laminate flooring surface, whereas low concentrations (0.0025, 0.005 and 0.0075 mg AI/cm(2)) resulted in significantly lower mortality levels, ranging from 1.6 to 30.8%, than high concentrations. In the case of ceramic floor tile surface, spinetoram treatments at all tested concentrations did not result in 100% mortality. Significant differences were recorded among the surfaces, depending on concentrations and exposure intervals. After 3-, 5- and 7-day exposure, mortality levels on ceramic floor tile surface were generally higher at low concentrations than those on the concrete and laminate flooring surfaces, whereas those on concrete and laminate flooring surfaces were significantly higher at high concentrations than ceramic floor tile surface. These results indicate that spinetoram at 0.025 and 0.05 mg AI/cm(2) achieve satisfactory control at relatively short exposures on common types of surfaces and thus can be used as an effective insecticide against A. obtectus
    corecore