197 research outputs found

    A Proof of Concept Study on Utilising a Non-invasive Microwave Analysis Technique to Characterise Silver Based Materials in Aqueous Solution

    Get PDF
    This paper reports on the feasibility of using a novel and robust microwave sensing technique to analyse and detect silver materials in an aqueous solution. Two products are tested, namely: silver chloride and silver oxide. The study mainly focused on indicating the difference between them and also any change in the size/size distribution of the sample. A microwave sensor designed previously is utilised to identify the potential of the technique to carry out the analysis. The results are presented as microwave spectrums that are the material response to microwaves. The results have shown that the technique has reasonably indicated the change in material type as well as size distribution. The results also show that these curves are distinguishable and can be related to the material and the change in its size. It is concluded that there is a potential of extending this technique to determine various other properties of silver products. The study suggests a design and development of a bespoke unit as a dedicated analysis tool and to address any anomalies arising from the current feasibility. This will have a huge industrial benefit in terms of cost reduction and time associated with the industrial analysis of silver material

    An Efficient Method for The Synthesis of Dihydropyridine by Hantzsch Reaction with Fe/SiO2 Nano Heterogeneous Catalysts

    Get PDF
    An efficient method for the synthesis of dihydropyridines (DHPs) by Hantzsch reaction with Fe/SiO2 heterogeneous catalysts was developed. The Fe/SiO2 catalysts was prepared by impregnation method. The catalysts were characterized by IR and SEM instruments. The SEM results indicated that Fe/SiO2 nano spheres were formed. The reaction procedure involved reaction of aldehyde, ethyl acetoacetate (EAA), ammonium acetate (NH4OAc) and ethanol under reflux. The study was focused on optimizing reactions conditions: Standardization of catalyst, substrate of study and solvent study. In order to identify the best active catalysts, five different ratios of catalyst were synthesized and evaluated for the title reaction under similar conditions. To standardize the active catalysts, different temperature conditions (i.e. room temperature, 60 ÂșC and 80 ÂșC) as well as catalysts amounts were evaluated. Under these established conditions, 2.5% Fe/SiO2 was the best active catalysts that resulted. Benzaldehyde and p-anisaldehyde were used to study the effect of having various substrates on the conversion and reaction time, especially the substituted aldehydes. The best results were obtained by reacting p-anisaldehyde with EAA, NH4OAc and ethanol at 60 ÂșC with 0.3 grams of 2.5% Fe/SiO2 heterogeneous catalysts. Thin Layer Chromatography (TLC) monitoring of the reaction mixture showed no selectivity at high temperatures (80 ÂșC) with 15% Fe/SiO2. Standardization of solvent study was executed with two solvents, ethanol and acetonitrile. The product dihydropyridines were analyzed using gas chromatography-mass spectrometry (GC-MS). The melting points of the products were compared with authentic samples reported in the literature. Hence, the Fe/SiO2 catalysts is eco-friendly and economically developed for the title reaction. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)

    Feasibility study on using microwave sensing technique to analyse silver-based products

    Get PDF
    This paper reports on the feasibility of using a novel and robust microwave sensing technology to detect and analyse various silverbased products such as silver nitrate and silver oxide. The focus of the investigation is to differentiate between the two products, identify the contamination and change in the sample size. A microwave sensor designed previously in house has been utilised to carry out this initial study to analyse the capability of microwave sensing technique to carry out the analysis. The change in the microwave spectra are used as an indicator of the difference in the silver products and any contamination they may have. The results and their detailed repeatability confirm the viability of using microwave sensing technique as a potential method to analyse various silver products. The curves obtained from the material response to microwaves are distinguishable and can be related to the materials’ properties. The study suggests a design and development of a bespoke unit as a dedicated analysis tool and to address any anomalies arising from the current feasibility. This will have a huge industrial benefit in terms of cost reduction and time associated with the industrial analysis

    Industry 4.0 – LabVIEW Based Industrial IoT Condition Monitoring System

    Get PDF
    As a result of a substantial shift in focus towards a more digital industry, multiple sectors of industry are now realising the potential of Industry 4.0 and Internet of Things (IoT) technology. The manufacturing industry in particular is subject to unexpected machine downtime from component wear over an extended period. With Industrial IoT (IIoT) technology implemented, there is the potential for gathering large quantities of data, which can be used for preventative maintenance. This research article addresses some of the technological requirements for developing an IoT industrial condition monitoring network, whose composition makes use of wireless devices along with conventional wired methods to enable a series of data capture and control operations in amongst a network of nodes. To provide a platform to host these operations, the industry standard fieldbus protocol Modbus TCP was used in conjunction with the LabVIEW development environment, where a bespoke graphical user interface was developed to provide control and a visual representation of the data collected. In addition, one of the nodes acted as the output for hardware displays, which in turn correlated the alarm status of the user interface. By using industry standard communication protocols, it was also possible to enable connectivity between real industry hardware, further extending the capabilities of the system

    Towards Software Based Optical Communication Methods for the Assistance of Docking Autonomous Underwater Vehicles

    Get PDF
    The use of optical communications systems is prevalent in underwater robotics when short-range data transmission is required or preferred. This paper proposes a method of producing and testing an optical communications system for use in the assistance of optical docking for autonomous underwater vehicles (AUVs). It describes how the Simulink modelling environment was used to program and simulate a model of a transmitter, which was then implemented on a microcontroller. The transmitter model implemented on hardware was then used to produce an optical signal, which was sampled, logged and used to design a receiver model in Simulink. For signalling purposes, the experiment used a light-emitting diode (LED) with a driver circuit and photodiode based receiver. This simulated approach using real world data enabled the analysis of the system at every point during the process, allowing for a hardware in the loop style approach to be used in the receiver model design. Consequently, the Simulink Coder was used to produce the receiver model’s equivalent in C++ for later deployment. A benchmark was determined through experimentation to compare within future studies; the system was tested and found to operate effectively at distances between 1 m and 12 m in a controlled in air test environment

    Automated Agricultural System for Multipurpose Activities of Farmers

    Get PDF
    Agriculture plays vital role in the development of country. In India about 70% of population depends upon farming and one third of the nation’s capital comes from farming. Issues concerning agriculture have been always hindering the development of the country. The only solution to this problem is smart agriculture by modernizing the current traditional methods of agriculture. Agricultural tasks automation is significant in recent days to reduce the labor work and increase the yield of crop, efficiency and profit. The project aims on the design, development & the fabrication of the agricultural system which can plough the land, sow the seeds, water spray, pesticides spray, monitor the crops and soil, cut the cultivated crops, separate the grains from the crops, cut the grass. It also aims on upgrading of existing marketing methods. The whole agricultural system works with battery and controlled through Bluetooth technology. Various operations are performed in the agriculture field like seeding, weeding, waste plant cutting, plowing etc. Very basic operation is seeding, plowing & crop cutting. But the present method of seeding, plowing & crop cutting are problematic. The equipments used for seed sowing are very difficult and inconvenient to handle. The machine can be advanced for sowing seeds in farm with particular distance between seed is adjusted. In this project system direction is provided by using Software programming. The current warehouse management system fails to preserve the quality of the stored products overtime, monitor the temperature, humidity, theft and fire attacks in the warehouse. The project also includes smart warehouse management system which includes temperature and moisture maintenance, theft and fire detection in the warehouse and delivers the real time notifications through GSM without human intervention

    A roadmap towards the smart factory

    Get PDF
    Industry 4.0 is the transformation of industrial manufacturing through digitisation and the use of different emerging technological advancement, when coupled together forms the smart factory. However, the roadmap of adoption is a journey rather than an absolute solution. The objectives of this paper are to give general insights and a roadmap towards the smart factory. A six-gear roadmap concept is proposed and discussed together with different challenges and practical ways of overcoming them. The significance of this paper can serve as a steppingstone for a detailed strategic roadmap for a successful implementation and transformation into a smart factory

    Real-time monitoring of meat drying process using microwave spectroscopy

    Get PDF
    The objective of this investigation is to monitor the meat drying process and try to analyse the changes of the electromagnetic (EM) signature from a patch antenna during the process. The antenna has been modelled using High Frequency Structure Simulation Software (HFSS) and then constructed. The experimental work carried out by placing a meat sample on a scale inside the fridge and recording reflection coefficient (S11) and weight measurements 24 times (every hour) a day during one month at the frequency range of 1GHz-6GHz. Then, the change in EM signature and weight loss is correlated and analysed. The results demonstrate a relationship between the reflection coefficient and weight loss of the meat sample. The weight of the sample drops down dramatically first week and then keeps steadily decreasing. Likewise, an amplitude shift is greater at the beginning of the drying process and then the shift stabilises
    • 

    corecore