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Abstract This paper reports on the feasibility of using a novel and robust micro-

wave sensing technique to analyse and detect silver materials in an aqueous solu-

tion. Two products are tested, namely: silver chloride and silver oxide. The study

mainly focused on indicating the difference between them and also any change in

the size/size distribution of the sample. A microwave sensor designed previously is

utilised to identify the potential of the technique to carry out the analysis. The

results are presented as microwave spectrums that are the material response to

microwaves. The results have shown that the technique has reasonably indicated the

change in material type as well as size distribution. The results also show that these

curves are distinguishable and can be related to the material and the change in its

size. It is concluded that there is a potential of extending this technique to determine

various other properties of silver products. The study suggests a design and

development of a bespoke unit as a dedicated analysis tool and to address any

anomalies arising from the current feasibility. This will have a huge industrial

benefit in terms of cost reduction and time associated with the industrial analysis of

silver material.
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1 Introduction

1.1 Scope of the Study

It is crucial in any manufacturing industry to determine the process variables rapidly

and accurately. This proof of concept study focused on introducing a new and

innovative method of quality control and assessment of silver materials during the

manufacturing process. It investigated the potential of using a non-invasive

microwave sensing technique to determine the properties of silver based materials

of various types and to instantaneously spot a difference between them. The

robustness of the technique demonstrated the potential of it to develop as a real-time

option in the situations where timely results are crucial. The investigation was

conducted in partnership with AmesGoldsmith UK Ltd, a manufacturer of silver

based products. The company was keen on exploring cost effective, robust and

reliable ways of characterising the silver based products during the manufacturing

process in terms of various properties. The challenging part of the study was to use

the microwave sensing technique for the samples in an aqueous solution, which is

the case during the manufacturing process of silver products at AmesGoldsmith UK

Ltd, based on the fact that microwaves can be absorbed in water due to its high

dielectric losses.

Currently, AmesGoldsmith UK Ltd has no method in place to monitor the quality

of the product during the manufacturing process. They carry out testing after the

manufacturing is complete which is time consuming, laborious to carry out and

often the results show inaccuracy and inconsistency in the process. The potential of

investigating an efficient technique capable of monitoring the process in real-time

would be a significant benefit to the company for quality control and validation of

the finished product.

This investigation has not only provided an innovative approach of microwave

analysis and its application to characterise the silver based products in aqueous

solution but also has introduced a firm ground to the industrial partner with

sufficient information on the potential of developing it further to not only monitor

the manufacturing process but also to explore its potential to be used to monitor the

properties of the material. These properties may include particle size, particle size

distribution, contamination, etc. during the manufacturing process. Although this

work presents a proof of concept study at this stage, the ultimate aim in the future

would be to design and develop a bespoke sensor unit to implement the microwave

sensing and monitoring.

2 Microwave Sensing Theory, Methodology and Materials

Microwave permittivity measurements and sensing has been much used in the

research for material characterisation and detecting the dielectric properties of

various substances. The technique has been established over a period of more than

40 years [1, 2]. Due to its accuracy, rapid response, reliability and non-intrusive
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nature, it has become a rapidly developing technology [1, 3, 4]. It is a low cost

measurement technique and has a capability to analyse samples in small or large

volumes [5–7]. It is non-ionising in nature, the sensor operates at low power, i.e. at

around 0 dBm or 0.001 W (1 mW) and has a good penetration depth in respect of

analyte materials [8]. Microwave sensing uses signals between 300 MHz and

300 GHz frequency range. The system can be designed as a portable solution. It is

an efficient technique and largely used for the characterisation of materials because

it can easily propagate through low-loss substances such as plastics, glass, ceramic,

etc. [4, 9, 10]. It is a relatively straight forward technique and the instrumentation

for measurements can be setup in minutes with the availability of measurement

results in seconds providing real-time data [11]. In addition to the advantages

mentioned above, however, the technique has some disadvantages including the

requirement of a higher degree of specialisation to interpret the results, simulta-

neous existence of multiple variables such as temperature, density, moisture,

structure, etc. affecting the microwave measurements [12].

Due to its versatile nature, the technique has been implemented in various

industrial applications such as to determine the dielectric properties of various

substances [2, 13, 14], to determine the particulate blend [15], in the food industry

[16–18], glucose concentration and blood glucose monitoring [19, 20], water, oil

and gas industry including multiphase flow monitoring [12, 21], characterisation of

construction materials [6, 9, 22], water level measurements, material moisture

contents, healthcare industry, etc., to name a few [23, 24].

2.1 Microwave Sensing and Resonant Cavity Theory

Microwave sensors can be designed and developed in various sizes, shapes and

types depending on the application type. This includes cavity resonators, Flexible

antennas/sensors, patch antennas, etc. [6, 13]. Microwaves use the transmission,

scattering, reflection and absorption of electromagnetic waves (EMW) to determine

the properties of molecules, materials and related species. The microwave frequency

band of the electromagnetic wave spectrum is influenced by the rotational energy of

molecules and are closely related to their geometric structure. Hence, any change in

the geometric structure, type, etc. of the molecules results in the change in

microwave spectrum obtained from its interaction with the materials (solids, liquids,

gases and suspensions) [9]. The underlying principle of microwave interaction with

the material is that the change in the permittivity or dielectric properties leads to the

change in the spectrum obtained which in turn is dependent on the molecular

structure of it. This means that any change in the molecular structure causes the

change in the permittivity of the material [8, 25].

Permittivity is a measurement of change in an electric field due to the presence of

the material. It is dependent on the material’s ability to polarise in response to the

applied field. The microwave analysis technique can be used to provide unique

signal spectrums of two important quantities, i.e. a reflected signal also known as

reflection coefficient (S11) and a transmitted signal also known as transmission

coefficient (S21). The Vector Network Analyser (VNA) can be used to generate

microwave signals. Since permittivity relates to the material’s ability to transmit an
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electric field, it is a complex quantity and changes with changing frequency. It takes

into consideration both the energy stored by the material called dielectric constant

e0, as well as any losses of energy termed as dielectric loss factor e00. These two

quantities together are called scattering parameters also referred to as S-parameters.

By considering how these parameters change at discrete frequency intervals, the

change can be linked to the material type, its composition, concentrations of the

constituents, size/size distribution, etc. in the sample [8, 24, 26].

In the current feasibility study, a cavity sensor was utilised as a sensing object.

The cavity sensor resonates when the applied electric and magnetic field forms a

standing wave pattern inside the cavity resonator. The cavity resonators can have a

single mode or multiple modes existing inside at one time. Each of the modes that

exist inside the cavity has its own resonant peak/frequency. A quality factor Q is

used to refer to the quality of the resonant peak, the sharper the peak the more

readily the sample can be analysed which in turns improve the accuracy of the

sensor. Three fundamental modes in the cylindrical cavity are TM010, TE111 and

TE011. The transverse magnetic (TM) mode has its electric component in the

direction of the propagation of wave whereas the transverse electric (TE) mode has

its magnetic component in the direction of propagation of wave [27]. The resonant

frequency in the cylindrical cavity for TMmnl mode can be calculated using the

Eq. (1).

fmnl ¼
c

2p
ffiffiffiffiffiffiffiffi

lrer
p

pnm

b

� �2

þ lp
d

� �2
" #1=2

ð1Þ

where er is the relative permittivity of the material, lr is the relative permeability of

the material, c is the velocity of light, d is the depth of the cavity, b is the radius of

the cavity, pnm is the nth root of the Bessel function of the mth order.

2.2 Design of the Resonant Cavity and COMSOL Simulations

The feasibility study used an aluminium cylindrical microwave cavity resonant

structure to study the properties of various silver materials in the aqueous solution.

It was challenging to study if microwaves can penetrate and characterise the

material within the aqueous solution. The sensor was a thin pan cake cylindrical

cavity and was designed at the Radio Frequency and Microwave (RFM) Group of

Liverpool John Moores University (LJMU). Since it was a proof of concept study,

the work explored the potential of using microwave sensing as a technique to

monitor the properties of silver material during the manufacturing process in

aqueous solution. Hence, the focus was on the technique and not the sensor itself to

assess if it can be developed potentially as a technique to carry out the analysis.

To understand the interaction of microwaves with the sample under test it was

important to provide the inner dimensions of the resonator cavity and the

arrangement of electromagnetic waves inside the cavity, representing the modes at

which the measurements were taken. The modes and the field pattern was simulated

using a COMSOL Multiphysics simulation tool and the results are presented. The
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schematic diagram of the cylindrical cavity’s side view, its inner dimensions,

sample and coupling structure is shown schematically in Fig. 1.

Since, the cavity was not designed for the current work, COMSOL simulations of

the resonant cavity filled with air were carried out. The simulations were carried out

at the experimental measurement frequencies to compare the experimental and

simulated results. These frequencies were identified through a series of experiments

conducted and presented in the Sect. 3.2. The frequency for S21 measurement was in

the range of 6–6.25 and 7.1–7.16 GHz whereas for S11 measurement was in the

range of 7.95–8 GHz. The experimental resonant peaks in the case of the empty

cavity for the measurement frequencies were at 6.1530, 7.1329 and 7.9792 GHz.

The simulated resonant peaks were identified at 6.1785, 7.165 and 8.104 GHz. The

results of the simulations were used to understand the interaction of microwaves

with the test samples at these frequencies to see how the peaks were obtained

despite the silver products being in a lossy medium (aqueous solution). The

simulations results of the resonant frequencies and their respective modes are

presented in Fig. 2.

It can be seen from Fig. 2 that the middle part of the cavity with the sample inlet

has a relatively low intensity of electromagnetic field. This low intensity part of the

cavity was utilised to carry out the measurements of various samples, i.e. empty

cavity, empty tube and silver samples in aqueous solution. From the simulations and

experimental results it was found that the modes at which the response peaks were

generated at TM220, TM320 and TM420.

2.3 Experimental Setup

A cavity resonator can be classed as a black box with EMW (microwaves) entering

the cavity from the input port, interacting with the material to characterise it and

leaving out of the output ports. The cavity utilised in the current work and the

experimental setup of the sensing system is shown in Fig. 3. The cavity was

connected to Rodhe & Schwarz ZVL13 Vector Network Analyser (VNA), a

Sample 
under 
test

d = 1.1 
cm

b = 6.5 cm

Part of the sample 
in the tube 
interac�ng with 
the microwaves

Coupling 
structure/antenna

Coupling 
structure/antenna

Fig. 1 Schematic diagram of the cavity, side view, along with its dimensions
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microwave source capable of carrying out the measurements between 9 kHz and

13.6 GHz. The power used to carry out the measurements was a minimum, i.e.

0 dBm (1 mW) and the bandwidth of the signal was 10 kHz.

This initial feasibility study made an effort to see how efficiently a microwave

sensing technique differentiated between various silver based products inside the

aqueous solutions. Further information such as difference in the particle size and a

particle size distribution was also indirectly investigated in this study. Although, the

size distribution was not quantified at this stage of the feasibility, this area can be

explored in detail in the follow up study. The overall size distribution of various

samples is presented in Table 1.

2.4 Material and Samples Preparation

Two types of silver materials, silver oxide and silver chloride, supplied by

AmesGoldsmith UK Ltd were used in the study. The samples were prepared and

tested in 15 mL polypropylene tubes as shown in Fig. 4. The silver material samples

in equal ratio to aqueous solution in the tube was subjected to analysis to ensure the

consistency of the measurements. Since the technique is temperature sensitive, the

samples were placed at a controlled room temperature of 20 �C for a few hours

before testing. The samples are shown in Fig. 5.

Fig. 2 COMSOL simulations of the field pattern and modes generated inside the cylindrical resonant
cavity with resonant peaks at a 6.1785 GHz, b 7.165 GHz, c 8.104 GHz

 13 Page 6 of 26 Sens Imaging  (2017) 18:13 

123



The samples tested are listed in Table 1 along with their description, size range

and type. It can be seen that a total of 8 samples were analysed. Two control

samples of empty cavity and cavity with empty tube inserted, 4 samples of silver

oxide and two samples of silver chloride of the same size range but from a different

batch were selected. There was a slight possibility of a difference in the percentage

of sizes present in a sample. All the samples were analysed individually. To study

VectorNetwork
Analyser (VNA)

input port

Sample
inser�on

Microwave resonant
cavity sensor

Microwave
output port

Fig. 3 Experimental setup of microwave sensing system, cables, connectors and Vector Network
Analyser (VNA)

Table 1 List of the samples analysed along with their description and size range

Sample # Sample name Description and sample

size (approx.) in (microns)

Samples tested in the microwave sensor

1 Empty cavity/sensor N/A

2 Empty sample tube (air) N/A

3 Silver oxide 1 180–1260

4 Silver oxide 2 180–1260

5 Silver oxide 3 180–1260

6 Silver oxide 4 180–1260

7 Silver chloride 1 240–1500

8 Silver chloride 2 240–1500
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further the capability of microwave sensors to determine other relevant parameters

in the manufacturing process, a future study is recommended, where a dedicated

sensor would need developing to target the specific properties of interest.

2.5 Theoretical Resonant Frequency Calculations

Before carrying out the experimental measurements, it was useful to calculate the

theoretical resonant frequencies of the empty cavity at the measurement frequencies

Silver
oxide

Silver

Fig. 4 Sample preparation in 15 mL polypropylene tube

Silver chloride and
silver oxide samples

tested

Fig. 5 Samples of silver chloride and silver oxide in aqueous solution analysed with microwave analysis
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using the Eq. (1) from Sect. 2.1. This was to establish theoretically the baseline and

to later compare the theoretical results with the experimental measurements. Since

the modes at which the simulated and experimental resonant peaks generated are

known, Eq. (1) can be used to work out the resonant peaks in each case. The results

of the theoretical resonant peaks for the modes TM220, TM320 and TM420 is given in

Table 2.

3 Results and Discussion

3.1 Influence of Silver Oxide on Aqueous Solution

It was important to study the influence of silver in aqueous solution by measuring

the dielectric properties of silver product. This was also to help in making

comparisons between the experimental and simulated results (presented in

Sect. 3.2.3). To give an indication of the accuracy of results, dielectric measure-

ments of only the silver oxide sample was measured. For this purpose, resonant

cavity method as described in [27] was used. The dielectric constant and dielectric

loss was calculated using Eqs. (2) and (3).

e0r ¼
Vc fc � fsð Þ

2Vsfs
þ 1 ð2Þ

e00r ¼
Vc

4Vs

1

Qs

� 1

Qc

� �

ð3Þ

In the above equations, index c is for the empty cavity, index s is for the cavity

loaded with sample and v is the volume. The result obtained for the dielectric

constant and dielectric loss of the silver oxide sample in aqueous solution is pre-

sented in Table 3.

Previous study by Ateeq et al. [28] has shown the study of microwave interaction

with silver based products in the form of powders such as silver oxide and silver

nitrate. The trend in the frequency change for both the S21 and S11 observed in the

currents study, the results of which are presented in Sects. 3.2.1 and 3.2.2, was

different to [28] in the case of silver chloride for both the S11 and S21 measurements.

The behavior of silver oxide samples on the other hand was found similar to the [28]

in the case of S11 measurements. The influence of the aqueous solution itself is

Table 2 Theoretical resonant peaks calculations for an empty cavity

Modes Theoretical resonant frequency, fmnl

(GHz), fmnl ¼ c
2p

ffiffiffiffiffiffi

lrer
p pnm

b

� �2þ lp
d

� �2
h i1=2

TM220 6.1829

TM320 7.1699

TM420 8.1277
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minimal, specifically in the case of S11 measurements (microwave response) for

silver oxide and the microwave frequency change shows the strong characteristic

response of silver oxide powder as noticed in [28]. Silver compounds such as silver

oxide is insoluble in aqueous solution (water) and extremely stable [29]. This also

indicates that why the silver materials analysed in the current investigation have

strong influence on the dielectric constant value measured and microwave response

with least interference effect from the aqueous solution they are in.

3.2 Experimental Procedure

Initially the sensor measurements of both S11 (reflection co-efficient) and S21
(transmission coefficient) was carried out over the full range of spectrum, 9 kHz–

13.6 GHz, with the instrument calibrated. This was to identify and highlight the

resonant peaks and the area of interest for further investigation and detailed

experimental analysis. The frequency was then narrowed down to a small range

depending on the response of the material to microwaves. Figure 6 shows the output

of S11 between 9 kHz and 13.6 GHz frequency.

Table 3 Dielectric property measurement of silver oxide sample

Frequency of

measurement (ghz)

Temperature (�C) Dielectric

constant (e0r)
Dielectric

loss (e00r )

3.63–3.66 18 1.405 0.0822

Fig. 6 S11 measurements (dB), showing the reflection co-efficient measurements between 9 kHz and
13.6 GHz frequency range
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After careful analysis of the full spectrum it was found that 6–9 GHz section of

the spectrum can be further investigated and is encircled in Fig. 6. The selection

was based on the more prominent response of microwave interaction with the

material around this frequency when looked at carefully. The frequency below

6 GHz didn’t show much of the change when various samples were tested and had

higher noise. Frequency above 9 GHz had higher order modes and complexity of

analysis associated with it which may require advance analysis techniques to be

applied before adequate results are obtained.

Figure 7 shows the S21 measurement between 9 kHz and 13.6 GHz. Again, the

area of interest was selected based on careful study of the full range frequency

response. The encircled section in Fig. 7 shows prominent peaks whereas the

frequencies outside the range either exhibited low level of response from various

samples or complexities in the measurements. Further results and discussion on the

selected sections of the spectrums in Figs. 6 and 7 are presented in the following

Sects. 3.2.1 and 3.2.2.

The VNA instrument was recalibrated between 6 and 9 GHz to take further

measurements of the highlighted areas in Figs. 6 and 7. This was to achieve high

quality data with higher number of data points to obtain prominent resonant peaks

with least error. The results of the S11 and S21 measurements between 6 and 9 GHz

is shown in Figs. 8 and 9 respectively.

The transmission co-efficient in Fig. 9 was first analysed further because of the

prominent peaks and clear response curves. Figure 9 shows the peaks between the

frequencies 6 and 7.19 GHz. The range was narrowed down to have a close look at

these peaks as in Fig. 10. The results of S21 measurements from Fig. 10 highlights

Fig. 7 S21 measurements (dB), showing the transmission co-efficient measurements between 9 kHz and
13.6 GHz frequency range
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two areas of interests each of which was studied separately to investigate the change

in the frequency response for each of the sample and to monitor how accurate the

response can be for similar samples on repetition. It was also interesting to see how

well microwaves can differentiate between samples of silver chloride and silver

Fig. 8 Reflection co-efficient, S11 (dB) measurements between 6 and 9 GHz

Fig. 9 Transmission co-efficient, S21 (dB) measurements between 6 and 9 GHz
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oxide and how it is compared with the control sample of empty tube in the cavity.

The two peaks detected were between 6–6.25 and 7.1–7.16 GHz and are shown in

Figs. 12 and 13 respectively and discussed in Sect. 3.2.1.

In case of S11 measurements in Fig. 8 the results of two resonant peaks detected

were more promising between the frequencies 7.85 and 8.5 GHz. However, the peak

between 8 and 8.5 GHz range when looked at carefully didn’t give prominent

results and was ignored in further analysis. The result between 7.85 and 8 GHz is

shown in Fig. 11 and was found worth studying further. Hence, the re-measure-

ments were carried out between this frequency ranges to study the material response

to microwaves and is shown in Fig. 14, discussed in Sect. 3.2.2.

3.2.1 Micro-analysis of the S21 Spectrums in a Narrow Frequency Range

By analysing Fig. 12 it is observed that the peak frequencies (resonant frequency) of

the empty cavity and the empty tube in a cavity (taken as a control sample) are at

6.1530 and 6.1521 GHz respectively. The resonant peak of the empty cavity

obtained in the experimental measurement at 6.1530 GHz was relatively compa-

rable to the theoretical resonant frequency of 6.1829 GHz presented in Table 2. The

comparison of the rest of the samples were then performed with the control sample

of empty tube to see the shift in the frequency and change in the amplitude (if any).

By analysing the silver chloride-1 and silver chloride-2 samples, the peaks were

identified for both at the frequency of 6.1595 GHz. Scientifically, it is very

important that the analysis technique should produce repeatable results. Hence, the

sample of silver chloride-1 was repeated and the resonant frequency was identified

Fig. 10 S21 (dB) measurements of the material response to the microwaves at the frequency of
6–7.19 GHz
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at 6.1598 GHz. It should be noted that when the sample was re-measured for

repeatability the side of the tube facing the incident microwave signal may have

slight differences in the size distribution of particles compared to the previous

Fig. 11 S11 (dB) measurements of the material response to the microwaves at the frequency of
7.85–8 GHz

Fig. 12 S21 (dB) measurements of the material response to the microwaves at the frequency of
6–6.25 GHz
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measurements. Microwave analysis is sensitive enough to detect this kind of change

in the distribution.

When the measurements for the silver oxide samples was analysed, the peaks for

the samples silver oxide-1, silver oxide-2, silver oxide-3 and silver oxide-4 were

detected at the frequencies 6.1580, 6.1574, 6.1580 and 6.1583 GHz respectively. On

repetition of the sample silver oxide-1 the peak frequency was at 6.1577 GHz. This

slight change again could be attributed to the change in the size distribution facing

the incident wave and may need further investigation to prove it. The results of the

above measurements and Fig. 12 show that:

• The shift of the frequency from the empty cavity to the empty tube sample was

0.9 MHz to the left showing the introduction of polypropylene tube in the

cavity. The rest of the comparison was performed between the control empty

tube sample and the silver material samples.

• The shift for both the silver chloride samples was around 7.4 MHz to the right

showing an increase in the frequency. It is significant and shows the

demonstrable shift in the frequency and distinction between the empty tube

and silver chloride sample in aqueous solution. When looking at the result of

repeated sample, the shift from the control sample was around 7.7 MHz. Also

the difference between the original sample and re-measurement was minute, i.e.

0.3 MHz which is pretty negligible and could be built into the design of a

bespoke unit.

• The shift for silver oxide samples was in between 5.3 and 6.2 MHz to the right

from the control sample, i.e. empty tube. This difference is again significant, and

the technique being sensitive, is large enough to demonstrate the potential of the

technique to analyse silver oxide samples in aqueous solution. When this shift

was compared with silver chloride sample the difference was more than

2.1–1.2 MHz between them. The peaks for silver oxide samples were between

the control and silver chloride samples. Again this value is large enough in

comparison to the sensitivity of the technique to demonstrate the potential of

differentiating between the two different types of Silver products, in this case

silver chloride and silver oxide.

• In addition to the change in the frequency, significant change in the amplitude

was observed between the two silver types as well as in comparison of them to

the control sample of empty tube as seen in Fig. 12.

When the S21 measurements between 7.1 and 7.16 GHz in Fig. 13 were analysed

it can be observed that the empty cavity and empty tube samples have the resonant

peaks at 7.1329 and 7.1320 GHz respectively. In comparison, the theoretical

resonant peak of the empty cavity was calculated at 7.1699 GHz. When the analysis

on the shift of silver chloride samples was carried out the peaks for both the silver

chloride-1 and silver chloride-2 samples as well as the repeated silver chloride-1

sample were detected at the frequency of 7.1347 GHz. For all the four silver oxide

samples including the repeated silver oxide-1 sample, the resonant peaks were

detected at the frequency of 7.1343 GHz. From the results obtained it can be stated

that:
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• The shift in the frequency of silver chloride samples in comparison to the control

sample is around 2.7 MHz towards right showing the increase in the frequency.

Again, the shift is significant and along with the change in amplitude in

comparison to the control sample demonstrates that the microwave sensing

technique is detecting the difference between the silver chloride and control

sample.

• The shift in the spectrum of silver oxide to the right was around 2.3 MHz which

is a high reading on the basis that the technique is very sensitive. The difference

between the silver chloride and silver oxide sample is around 0.4 MHz.

Although it is tiny and could be negligible, in conjunction with the amplitude

change in comparison to silver chloride sample could prove significantly

important to differentiate between the two types of silver products. This

capability of considering both the frequency shift and amplitude needs to be

built into the design of the sensor.

• As stated earlier, in addition to the change in the frequency observed, a

significant difference in the amplitudes between the samples exists. The bespoke

sensor for the purpose can be designed to take this into consideration within an

acceptable range of amplitude change.

In summary, the results between the frequency ranges of 6–6.25 GHz were more

effective in comparison to the frequency range of 7.1–7.16 GHz in differentiating

between the silver products. In addition, the results in Figs. 12 and 13 also shows

that the two parameters, i.e. frequency and amplitude, can be used together in the

sensor detection capability to differentiate between various types of silver samples.

Fig. 13 S21 (dB) measurements of the material response to the microwaves at the frequency of
7.1–7.16 GHz
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The results show another important parameter called the quality factor ‘Q’ of the

cavity. Figure 12 shows a high quality factor of the cavity in the given frequency

range in comparison to slightly lower quality factor in the case of Fig. 13. It can be

observed that high Q factor cavity can increase the sensitivity of detection as well as

characterisation of the material and can easily be analysed.

The initial results discussed above show the potential of the microwave sensing

to be developed as a technique to analyse Silver products in aqueous solution.

However, a bespoke sensor unit is required to minimise the error and to maximise

the detection capability by keeping the sensitivity at balance. This can be achieved

through step by step modelling and the design of a microwave sensor.

3.2.2 Micro-analysis of the S11 Spectrums in a Narrow Frequency Range

Although prominent but less consistent results in terms of repetition were obtained

from S11 measurements, it was worth considering the effectiveness of microwave

sensors using the reflection co-efficient measurements. The re-calibrated measure-

ment results for the frequency 7.95–8 GHz is shown in Fig. 14. After careful

analysis of Fig. 14, it can be seen that the response of each sample to microwaves is

slightly different. The shifts in the peaks are consistent with the S21 measurements,

however, there is a change in the amplitude with low quality factor ‘Q’

measurement results, specifically in the case of silver oxide.

As seen in Fig. 14, the resonant frequency for the empty cavity and control

sample of empty polypropylene tube was at 7.9792 and 7.9728 GHz respectively. It

shows a shift of around 6.4 MHz to the left for the empty tube sample in comparison

Fig. 14 S11 (dB) measurements of the material response to the microwaves at the frequency of
7.95–8 GHz
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to the empty cavity. The measurements of silver chloride-1 and silver chloride-2

exhibited a peak frequency of 7.9801 and 7.9800 GHz with a minute difference of

0.1 MHz. This is approximately a shift of 7.3 MHz to the right in comparison to the

controls ample which is again significant. When the measurement of silver chloride-

1 was repeated the peak frequency was detected at 7.9810 GHz. It is a shift of

1 MHz from the first measurements of silver chloride-1. This shows that the

repeatability in the case of S11 measurements need to be further examined and

careful consideration should be given to the design of the new sensor. However, it

would be of concern if the measurements need to be carried out using S11 (reflection

co-efficient) mode which may not be the case for this application because

repeatable and consistent results are obtained in the case of S21 measurements.

Hence, better results might be achieved if the design of the sensor is carried out

around the transmission coefficient measurements. For the silver oxide, the

measurements results of silver oxide-1, silver oxide-2 shows peaks at 7.9784 GHz

whereas silver oxide-3 and silver oxide-4 shows peaks at the frequencies

7.9785 GHz. When the silver oxide-1 sample was repeated the peak value is at

7.9784 GHz which is similar to the original. The shift in the case of silver oxide

from the control sample is around 5.7 MHz which shows the capability of the sensor

detection and is very reasonable in terms of resonant peaks occurrences.

In case of S11 measurements, the only difference observed was the change in the

amplitude of every sample. If it is important to design a sensor around S11 detection

the sensitivity and accuracy can be looked into and could possibly be reduced by the

optimum design of the bespoke unit.

The theoretical resonant peak for an empty cavity calculated in Table 2 was at

8.1277 GHz. This varied in comparison to the experimental value. However, as

mentioned above the S11 measurement may not be accurate and may not be a good

choice for the future sensor development for characterising the silver products in

aqueous solution.

3.2.3 Comparison of Simulated and Experimental S21 Results

To make a direct comparison between the experimental and simulated results to

evaluate how close they are, full Electromagnetic simulations on the S-parameters

were carried out in between the frequency range of 6–8 GHz for the simulated S21
parameter. Only the S21 parameter was considered due to the evident difference in

the experimental results of the response frequencies to various silver materials.

Simulated S11 parameter was measured but the resonant frequency was detected at

around 8.1 GHz in comparison to the experimental resonant frequency of

7.9792 GHz. This was a significant difference between the experimental and

simulated calculations, similar to the variation between the theoretical and

experimental calculations. Hence, to avoid the confusion to the reader the results

are not here. For the purpose of this study only two samples were simulated for S21,

i.e. empty cavity, and cavity loaded with the silver oxide sample. The measured

value of the permittivity (discussed in Sect. 3.1) of silver oxide sample was used in

the simulations. The results of both the simulated and experimental S21 parameters

for the empty cavity and loaded cavity with silver oxide sample are presented in
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Figs. 15 and 16 respectively. This is to make the direct comparison possible and to

identify the differences between the simulated and experimental results. Figure 15

shows the comparison of the simulated with the experimental resonant frequencies

Fig. 15 Simulated and experimental S21 measurements of the empty pan cake cavity sensor between the
frequencies of 6 and 8 GHz

Fig. 16 Simulated and experimental S21 measurements of the cavity loaded with the silver oxide sample
between the frequencies of 6 and 8 GHz
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(highlighted in Fig. 15) of an empty cavity. The simulated resonant frequencies

were identified at 6.18 and 7.16 GHz approximately, which closely corresponds to

the experimental results of the resonant peaks at 6.1530 and 7.1329 GHz for an

empty cavity. The additional peaks in the simulations, differences in the

experimental and simulated signal at higher frequencies and the slight difference

in the amplitude of the simulated signal in comparison to the experimental results

could be due to the way coupling devices has been modelled. Similarly, for the

cavity loaded with silver oxide sample, the simulated resonant peaks (highlighted in

Fig. 16) were identified at approximately 6.18 and 7.16 GHz, which is close to the

experimental results of 6.1580 and 7.1343 GHz. The simulated results could

possibly be improved by giving design considerations to the modeling of coupling

devices.

3.2.4 Repeatability of Samples

Repeatability of both the silver oxide and silver chloride samples was tested as seen

in Figs. 6, 7, 8, 9, 10, 11, 12, 13 and 14 by measuring the silver oxide sample five

times and silver chloride sample twice. The results were reasonable with a

consistent frequency response of microwave to the silver material. Since the study is

in feasibility stage and indicates some good repeatability of the technique, detailed

repeatability of the microwave response to silver materials will be tested in the

following study along with additional statistical analysis. The plan is to design and

develop a bespoke sensor that will look into additional analysis such as detailed

repeatability, measurement of silver materials and their concentration in the aqueous

solution as well as study on various aspects of resonant frequency such as dielectric

constant and loss factors.

3.3 Quality Factor (Q value) Calculations

The quality factor estimates the quality of the results obtained. It provides an

indication of the accuracy of the results. High Q value will have a high accuracy and

narrow bandwidth of the cavity resonator. The Q value can be calculated from the

transmission and reflection coefficient measurement curves, i.e. S21 and S11
parameters and is represented by Eq. (4).

Q ¼ f0

Df
ð4Þ

where f0 is the resonant frequency of the signal captured, Df is the bandwidth of the

signal obtained using the cut-off frequencies f2 - f1 each of which is obtained by

finding a 3 dB amplitude change on either side of f0. The Q values of the results

from Figs. 12, 13 and 14 for S21 and S11 are presented in Table 4. The results of the

Q value for the S21 and S11 signals for various frequency range show that the S21
measurements made at the frequency range of 7.10–7.16 GHz yields the highest

accuracy with a best quality output when the cavity is loaded with silver chloride

and silver oxide samples. However, from the analysis in Sect. 3.2.1, it is observed
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that the frequency shifts were more prominent and distinguishable between the

control sample (empty tube), silver chloride and silver oxide samples. This con-

cludes that Q value of the cavity should not be the only parameter when designing

the cavity sensor. Other factors such as the change in the frequency and amplitude

also play a vital role in the design of the sensor and the analysis of the results. In

terms of the measurements presented, the results are an indication of this consid-

eration. When designing a bespoke sensor, results from these measurable parame-

ters must be considered.

3.4 Dielectric Constant Results and Its Relationship with the Frequency
shift

As discussed in Sect. 3.1, to give an indication of the behavior of silver products in

aqueous solution, the dielectric constant value of silver oxide in aqueous solution

was measured and was recorded to be e0r = 1.4051. This value was higher than the

dielectric constant value of air inside the cavity, i.e. e0r = 1 representing that the

shift of the frequency supposedly should be to the left of the measured signal of the

empty cavity. This seems to be true for the S11 measurements (Fig. 14) where the

shift is to the left of the empty cavity signal specifically for the silver oxide samples.

However, the S21 measurements (Figs. 12, 13) doesn’t satisfy this conventional

definition of the frequency shift where the shift is usually to the left with increase in

the dielectric value of the material. Thus, the relationship between the frequency

shift and the dielectric constant value of the samples is not consistent.

This behaviour has been observed by some previous research studies such as

Kumar and Sharma [30] and Min et al. [31]. In the case of most materials, a

decrease in the dielectric constant value is expected with an increase in the

frequency due to the dielectric relaxation phenomena (typical times *10-11 s).

Table 4 Quality factor (Q values) of the measured curves of samples obtained from both the S21 and S11
signals

Sample tested Measured signal, S21 or S11 (dB) Frequency of measurement (GHz) Q value

Empty cavity S21 6.00–6.25 3619.41

Empty tube 3618.88

Silver chloride 2587.38

Silver oxide 530.56

Empty cavity S21 7.10–7.16 3424.29

Empty tube 2663.00

Silver chloride 3996.00

Silver oxide 1844.23

Empty cavity S11 7.95–8.00 6689.47

Empty tube 6684.14

Silver chloride 3345.12

Silver oxide 836.10
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This means that at higher frequencies the speed of dipole rotation is insufficient and

cannot match with the changing AC bias [31]. However, it may be speculated that

for certain materials it is possible that the friction against the dipole motion drops

with frequency. If it is assumed that the friction of the dipole is due to the molecular

rearrangements of the environment and the bond between them, the timescale of the

molecular rearrangements would be slower than the dipole motion. Thus, the

friction would become less at higher frequencies causing an inverse effect in the

frequency with the change in permittivity. Min et al. [31] also found that most of the

materials experience change in the dielectric constant value due to the temperature

enhanced molecular mobility and dipole rotation phenomena. For some materials,

however, the temperature dependence is significant. In such cases the dipoles are

restricted at room temperature and do not follow the AC field closely. When the

temperature is increased the molecular motions become easier which causes the

reinforcement of the response to the field variation. This results in both the dielectric

constant and loss factor to increase. When the temperature is reduced, both the

mobility and rotation would be restricted again. During the course of reduction in

the temperature, the process may not be simply reversible and could cause some of

the molecules and dipoles not to go back to the previous condition and may acquire

new equilibrium. Thus, the dielectric constant will increase with rising temperature

and will show a decrease at low temperature [31]. In the case of more complex

mixes where more than one material is present there might be an accumulation of

charges at the interface between the two materials which could result in an

interfacial polarisation and subsequently field distortion (Maxwell–Wagner effect).

The changes thus become smaller and may cause the system to behave opposite, i.e.

increase in the dielectric constant with the frequency at room temperature [32, 33].

In the case of samples measured in this study, an experimental study is required to

identify which of the above factors is the main contributor to this particular

phenomenon and could make an interesting study to follow. In summary, the

material tested could be either frequency or temperature dependent or it could be

influenced by both.

4 Conclusions and Recommendations

An initial feasibility study was carried out on the use of microwave sensing

technique as a potential method to analyse silver materials and their properties in

aqueous solution. The scope of this preliminary study was mainly focused on

differentiating between various silver products such as silver chloride and silver

oxide as well as indirect detection of change in the size distribution between the two

products. Microwave sensing was found to be a robust, instantaneous, cost effective

and repeatable technique and has a potential to analyse the silver material which is

of great benefit to the industry. The results were promising exhibiting accuracy and

repeatability (for the theoretical, simulated and experimental values), the attributes

required for any industrial application, especially in the case of transmission co-

efficient, S21 measurements. The results have shown that the technique is capable of

detecting various silver based products and display microwave spectrums of them.
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However, detailed design work is required to develop a dedicated unit with a full

potential to not only minimise the error but also to include possibly a detection of

multiple properties of the material and linking them back to the material itself.

Potentially, the technique can be further developed as an alternative to conventional

time consuming physical and chemical testing methods. The biggest advantage

would be the cost and time savings associated with the technique if available to the

Silver products industry.

A thorough study of smaller sections of microwave spectrum and individual

peaks helped in exploring and assessing the potential of developing microwave

sensing as a technique to differentiate between the silver samples. This brief

investigation also pointed out the capability of extending this technique and carry

out further research work to see if the technique can enable the characterisation of

the material including particle size, particle size distribution, contamination, etc. to

name a few. Some of the conclusions and recommendations are listed below:

• Microwave sensing technique demonstrated its capability to spot individual

samples of silver chloride and silver oxide and showed the difference between

them. If further research work is carried out, the spectrums captured from the

dedicated sensor designed can be stored in a database to create a wealth of

microwave spectrums representing certain material properties.

• The differences were not only spotted in the frequency shift but also in the

amplitudes between silver chloride and silver oxide samples. It was also found

that on repeat measurements of the similar material, i.e. silver oxide-1, silver

oxide-2, silver oxide-3, silver oxide-4 or silver chloride-1, silver chloride-2, the

amplitude slightly changed, especially in the case of S11 measurements. This

could be attributed to the variation in the size distribution percentage in the

sample or the way the sample(s) was re-inserted, i.e. different side of the tube

facing the incident microwave. To develop an effective microwave sensor, both

of these parameters should be considered and combined together to relate it to a

certain type of sample. Further work in the analysis could also possibly make

this technique more intelligent by relating the changes in the microwave

response to the specific properties of silver materials. This could be achieved

through artificial intelligence techniques.

• At AmesGoldsmith UK Ltd, the silver products produced have fewer size

distribution range. However, if a sensor is developed for wider range of particle

size and size distribution detection addressing the wider silver based industry,

different combinations of particle size and particle size distribution may provide

similar resonant frequency and quality factor Q. This can be addressed by

implementing advance post analysis/processing techniques such as artificial

intelligence and neural networks analysis in the processing of the results

obtained to distinctively identify various products and relate them to the

products specific properties.

• The simulated and experimental results almost provided comparable resonant

peaks at the measurement frequency range, showing the resemblance between

the simulated and experimental results. The exception was the measurement of

S11 parameter that has a simulated resonant peak detected at higher frequency
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than the experimental result and hence was not considered for further simulation

analysis.

• In terms of theoretical measurements, the theoretical calculations of the

resonance for the measurement frequencies in the 6 and 7 GHz frequency range

was close to the experimental outcome. Again, the slight difference was

observed in the case of the resonant peak of S11 measurement.

• A non-conventional phenomena of increase in frequency with permittivity was

observed and could be attributed to the interfacial polarisation or significant

dependence of samples on temperature or frequency parameters as discussed in

Sect. 3.4. However, further study is required to explore this in more detail and at

this occasion it is not clear which of the above factors are making the samples to

respond strangely.

• As mentioned earlier, there is a need to capture all the data and built up a

database for the future reference to allow the potential development of the

analysis technique up to a prototype level. Pulling out the data and making

comparisons between various set of data would also allow to target anomalies in

the existing technique and help in optimising the development of the new sensor

system for more accurate and predictable results.

Development of microwave sensing technique could bring a significant benefit to

the silver manufacturing industry. However, the key is to develop the sensor and

sensing technique that can target the industry requirements in a simple manner.

Empowering the silver industry with instantaneous analysis technique can reduce

the time spend on the analysis through conventional methods, can reduce the labour

intensive work, improve the quality of the product and reduce the costs associated

with the conventional analysis techniques in a precise manner. The cost

effectiveness can be achieved by focusing the analysis around a narrow band of

frequency.
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