19 research outputs found

    The application of Bonelike® Poro as a synthetic bone substitute for the management of critical-sized bone defects - A comparative approach to the autograft technique - A preliminary study

    Get PDF
    The effective treatment of non-unions and critical-sized defects remains a challenge in the orthopedic field. From a tissue engineering perspective, this issue can be addressed through the application bioactive matrixes to support bone regeneration, such as Bonelike®, as opposed to the widespread autologous grafting technique. An improved formulation of Bonelike® Poro, was assessed as a synthetic bone substitute in an ovine model for critical-sized bone defects. Bone regeneration was assessed after 5 months of recovery through macro and microscopic analysis of the healing features of the defect sites. Both the application of natural bone graft or Bonelike® Poro resulted in bridging of the defects margins. Untreated defect remained as fibrous non-unions at the end of the study period. The characteristics of the newly formed bone and its integration with the host tissue were assessed through histomorphometric and histological analysis, which demonstrated Bonelike® Poro to result in improved healing of the defects. The group treated with synthetic biomaterial presented bone bridges of increased thickness and bone features that more closely resembled the native spongeous and cortical bone. The application of Bonelike® Poro enabled the regeneration of critical-sized lesions and performed comparably to the autograph technique, validating its octeoconductive and osteointegrative potential for clinical application as a therapeutic strategy in human and veterinary orthopedics.This research was supported by Projects PEst-OE/AGR/UI0211/2011 from FCT , and COMPETE 2020 , from ANI – Projetos ID&T Empresas em Copromoção , by the project “insitu.Biomas – Reinvent biomanufacturing systems by using an usability approach for in situ clinic temporary implants fabrication” with the reference POCI-01-0247-FEDER-017771 , by the project “Print-on-Organs – Engineering bioinks and processes for direct printing on organs” with the reference POCI-01-0247-FEDER-033877 , and by the project “Bone2Move - Development of ‘in vivo’ experimental techniques and modelling methodologies for the evaluation of 4D scaffolds for bone defect in sheep model: an integrative research approach” with the reference POCI-01-0145-FEDER-031146 . Mariana Vieira Branquinho ( SFRH/BD/146172/2019 ), Ana Catarina Sousa ( SFRH/BD/146689/2019 ), and Rui Damásio Alvites ( SFRH/BD/116118/2016 ), acknowledge FCT , for financial support. This research was supported by Projects PEst-OE/AGR/UI0211/2011 from FCT, and COMPETE 2020, from ANI ? Projetos ID&T Empresas em Copromo??o, by the project ?insitu.Biomas ? Reinvent biomanufacturing systems by using an usability approach for in situ clinic temporary implants fabrication? with the reference POCI-01-0247-FEDER-017771, by the project ?Print-on-Organs ? Engineering bioinks and processes for direct printing on organs? with the reference POCI-01-0247-FEDER-033877, and by the project ?Bone2Move - Development of ?in vivo? experimental techniques and modelling methodologies for the evaluation of 4D scaffolds for bone defect in sheep model: an integrative research approach? with the reference POCI-01-0145-FEDER-031146. Mariana Vieira Branquinho (SFRH/BD/146172/2019), Ana Catarina Sousa (SFRH/BD/146689/2019), and Rui Dam?sio Alvites (SFRH/BD/116118/2016), acknowledge FCT, for financial support

    Repertoire, Genealogy and Genomic Organization of Cruzipain and Homologous Genes in Trypanosoma cruzi, T. cruzi-Like and Other Trypanosome Species

    Get PDF
    Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine, diagnostic and genotyping approaches

    In vivo systemic toxicity assessment of an oxidized dextrin-based hydrogel and its effectiveness as a carrier and stabilizer of granular synthetic bone substitutes

    No full text
    The worldwide incidence of bone disorders is raising, mainly due to ageing population. The lack of effective treatments is pushing the development of synthetic bone substitutes (SBSs). Most ceramic-based SBSs commercially available display limited handling properties. Attempting to solve these issues and achieve wider acceptance by the clinicians, granular ceramics have been associated with hydrogels to produce injectable/moldable SBSs. Dextrin, a low-molecular-weight carbohydrate, was used to develop a fully resorbable and injectable hydrogel. It was firstly oxidized with sodium periodate and then cross-linked with adipic acid dihydrazide. The in vivo biocompatibility and safety of the dextrin-based hydrogel (HG) was assessed by subacute systemic toxicity and skin sensitization tests, using rodent models. The results showed that the HG did not induce any systemic toxic effect, skin reaction or genotoxicity, neither impaired the bone repair/regeneration process. Then, the HG was successfully combined with granular bone substitute, registered as Bonelike® (250-500 ?m) to obtain a mouldable/injectable SBS, which was implanted in tibial fractures in goats for 3 and 6 weeks. The obtained results showed that HG allowed the stabilization of the granules into the defect, ensuring effective handling and moulding properties of the formulation, as well as an efficient cohesion of the granules. This article is protected by copyright. All rights reserved.Isabel Pereira was supported by the grant SFRH/BD/ 90066/ 2012 from FCT, Portugal. This work was funded by the project “DEXGELERATION – Advanced solutions for bone regeneration based on dextrin hydrogels” (Norte-07-0202-FEDER-038853) and the project “iBone Therapies – innovative therapies for bone regeneration” (NORTE-01-0247-FEDER-003262). The authors acknowledge the funding from FCT under the scope of the strategic funding of UID/BIO/04469/2013 and UID/BIM/04293/2013 units and COMPETE 2020 (POCI-010145-FEDER-006684), BioTecNorte operation (NORTE-010145-FEDER-000004) and NORTE-01-0145-FEDER-000012 funded by FEDER under the scope of Norte2020—Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio
    corecore