1,068 research outputs found

    Synchronous solutions and their stability in nonlocally coupled phase oscillators with propagation delays

    Full text link
    We study the existence and stability of synchronous solutions in a continuum field of non-locally coupled identical phase oscillators with distance-dependent propagation delays. We present a comprehensive stability diagram in the parameter space of the system. From the numerical results a heuristic synchronization condition is suggested, and an analytic relation for the marginal stability curve is obtained. We also provide an expression in the form of a scaling relation that closely follows the marginal stability curve over the complete range of the non-locality parameter.Comment: accepted in Phys. Rev. E (2010

    Дослідження мотиваційних чинників професійного становлення вчителя

    Get PDF
    This paper studies two-hop cooperative demodulate-and-forward relaying using multiple relays in wireless networks. A threshold based relay selection scheme is considered, in which the reliable relays are determined by comparing source-relay SNR to a threshold, and one of the reliable relays is selected by the destination based on relay-destination SNR. The exact bit error rate of this scheme is derived, and a simple threshold function is proposed. It is shown that the network achieves full diversity order (N +1) under the proposed threshold, where N is the number of relays in the network. Unlike some other full diversity achieving protocols in the literature, the requirement that the instantaneous/average SNRs of the source-relay links be known at the destination is eliminated using the appropriate SNR threshold

    Clustered chimera states in delay coupled oscillator systems

    Full text link
    We investigate "chimera" states in a ring of identical phase oscillators coupled in a time-delayed and spatially non-local fashion. We find novel "clustered chimera" states that have spatially distributed phase coherence separated by incoherence with adjacent coherent regions in anti-phase. The existence of such time-delay induced phase clustering is further supported through solutions of a generalized functional self-consistency equation of the mean field. Our results highlight an additional mechanism for cluster formation that may find wider practical applications

    Mean field approximation of two coupled populations of excitable units

    Full text link
    The analysis on stability and bifurcations in the macroscopic dynamics exhibited by the system of two coupled large populations comprised of NN stochastic excitable units each is performed by studying an approximate system, obtained by replacing each population with the corresponding mean-field model. In the exact system, one has the units within an ensemble communicating via the time-delayed linear couplings, whereas the inter-ensemble terms involve the nonlinear time-delayed interaction mediated by the appropriate global variables. The aim is to demonstrate that the bifurcations affecting the stability of the stationary state of the original system, governed by a set of 4N stochastic delay-differential equations for the microscopic dynamics, can accurately be reproduced by a flow containing just four deterministic delay-differential equations which describe the evolution of the mean-field based variables. In particular, the considered issues include determining the parameter domains where the stationary state is stable, the scenarios for the onset and the time-delay induced suppression of the collective mode, as well as the parameter domains admitting bistability between the equilibrium and the oscillatory state. We show how analytically tractable bifurcations occurring in the approximate model can be used to identify the characteristic mechanisms by which the stationary state is destabilized under different system configurations, like those with symmetrical or asymmetrical inter-population couplings.Comment: 5 figure

    Investigations of Ti Binary Alloys Manufactured by Powder Metallurgy for Biomaterial Applications

    Full text link
    [EN] Biomaterials encompass synthetic alternatives to the native materials found in our body. They have shown rapid growth in the field of elderly population demands with the prolongation of human life. Titanium is one of the biomaterials with excellent properties and biocompatibility. However, its high stiffness may cause weakening in the structures. To sort out this problem, Ti-Cr, Ti-Mo, and Ti-Cu alloys were produced by powder metallurgy. Metal powders were mixed by mechanical alloying. After pressing and sintering, characterizations were carried out by scanning electron microscopy, X-ray diffraction, electron backscattering diffraction, and three points bending test.The authors thank the Ministerio de Economia y Competitividad of Spain for the research project MAT2014-53764-C3-1-R, An European Commission by FEDER funds for the purchase of equipment, the Generalitat Valenciana by the PROMETEO/2016/040 project.Atay, HY.; Rodríguez, M.; Amigó Mata, A.; Vicente-Escuder, Á.; Amigó, V. (2018). Investigations of Ti Binary Alloys Manufactured by Powder Metallurgy for Biomaterial Applications. Acta Physica Polonica A. 134(1):415-418. https://doi.org/10.12693/APhysPolA.134.415S415418134

    Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields

    Get PDF
    The aim of this paper is to provide a general procedure to extract the constitutive parameters of a plasticity model starting from displacement measurements and using the Virtual Fields Method. This is a classical inverse problem which has been already investigated in the literature, however several new features are developed here. First of all the procedure applies to a general three-dimensional displacement field which leads to large plastic deformations, no assumptions are made such as plane stress or plane strain although only pressure-independent plasticity is considered. Moreover the equilibrium equation is written in terms of the deviatoric stress tensor that can be directly computed from the strain field without iterations. Thanks to this, the identification routine is much faster compared to other inverse methods such as finite element updating. The proposed method can be a valid tool to study complex phenomena which involve severe plastic deformation and where the state of stress is completely triaxial, e.g. strain localization or necking occurrence. The procedure has been validated using a three dimensional displacement field obtained from a simulated experiment. The main potentialities as well as a first sensitivity study on the influence of measurement errors are illustrated

    Discovering universal statistical laws of complex networks

    Full text link
    Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their generalisation power, which we identify with large structural variability and absence of constraints imposed by the construction scheme. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This allows, for instance, to infer global features from local ones using regression models trained on networks with high generalisation power. Our results confirm and extend previous findings regarding the synchronisation properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks with good approximation. Finally, we demonstrate on three different data sets (C. elegans' neuronal network, R. prowazekii's metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models

    Editorial of Special Issue of National Identities: Alevism as an ethno-religious identity: Contested boundaries

    Get PDF
    No abstract for editorial but this is the opening paragraph: This special issue on Alevism and trans/national Alevi identity critically engages with the relationship between religion, ethnicity and national identity. The core issues are as follows: • how ethnicity and religion are conceptualised for a relatively invisible ethnic group in different national contexts; • how religion and ethnicity intersect when Alevism is both a faith and an ethnic identity, especially when conceptions of that identity are contested; • how identity is shaped through state policies within different national policy contexts and how etic definitions of minority communities are constructed by the state or other agencies with the power to impose them on the community in contrast to the emic or self-definitions of Aleviness from within the Alevi community; • how despite the fragmented, heterogeneous nature of Alevi communities, there is also a sense of a single, transnational imaginary community, at least for the purposes of political assimilation/integration and activism; • how education and other arenas of political, religious and cultural engagement at local, national and transnational levels create the possibilities, both positively and negatively, for future action/policy to situate minority ethnic communities

    Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres

    Full text link
    We show that a dimer made of two gold nanospheres exhibits a remarkable efficiency for second-harmonic generation under femtosecond optical excitation. The detectable nonlinear emission for the given particle size and excitation wavelength arises when the two nanoparticles are as close as possible to contact, as in situ controlled and measured using the tip of an atomic force microscope. The excitation wavelength dependence of the second-harmonic signal supports a coupled plasmon resonance origin with radiation from the dimer gap. This nanometer-size light source might be used for high-resolution near-field optical microscopy.Comment: 6 pages, 5 figure
    corecore