80 research outputs found

    On the STM imaging contrast of graphite: towards a “true’' atomic resolution

    No full text
    Different phenomena observed in the high-resolution images of graphite by scanning tunneling microscopy (STM) or atomic force microscopy (AFM) such as the asymmetry in the charge density of neighboring carbon atoms in a hexagon, the high corrugation amplitudes and the apparent absence of point defects has led to a controversial discussion since the first published STM images of graphite. Different theoretical concepts and hypotheses have been developed to explain these phenomena. Despite these efforts a generally accepted interpretation is still lacking. In this paper we discuss a possible imaging mechanism based on mechanical considerations. Forces acting between tip and sample are taken into account to explain the image contrast. We present for the first time a direct atomic resolution of the graphite hexagonal structure by transmission electron microscopy (HRTEM), revealing the expected hexagonal array of atoms and the existence of several types of defects. We discuss the possibility that the STM image of graphite is a result of convolution of the electronic properties and the atomic hardness of graphite

    Experimentally Engineering the Edge Termination of Graphene Nanoribbons

    Full text link
    The edges of graphene nanoribbons (GNRs) have attracted much interest due to their potentially strong influence on GNR electronic and magnetic properties. Here we report the ability to engineer the microscopic edge termination of high quality GNRs via hydrogen plasma etching. Using a combination of high-resolution scanning tunneling microscopy and first-principles calculations, we have determined the exact atomic structure of plasma-etched GNR edges and established the chemical nature of terminating functional groups for zigzag, armchair and chiral edge orientations. We find that the edges of hydrogen-plasma-etched GNRs are generally flat, free of structural reconstructions and are terminated by hydrogen atoms with no rehybridization of the outermost carbon edge atoms. Both zigzag and chiral edges show the presence of edge states.Comment: 16+9 pages, 3+4 figure

    Spatially Resolving Spin-split Edge States of Chiral Graphene Nanoribbons

    Full text link
    A central question in the field of graphene-related research is how graphene behaves when it is patterned at the nanometer scale with different edge geometries. Perhaps the most fundamental shape relevant to this question is the graphene nanoribbon (GNR), a narrow strip of graphene that can have different chirality depending on the angle at which it is cut. Such GNRs have been predicted to exhibit a wide range of behaviour (depending on their chirality and width) that includes tunable energy gaps and the presence of unique one-dimensional (1D) edge states with unusual magnetic structure. Most GNRs explored experimentally up to now have been characterized via electrical conductivity, leaving the critical relationship between electronic structure and local atomic geometry unclear (especially at edges). Here we present a sub-nm-resolved scanning tunnelling microscopy (STM) and spectroscopy (STS) study of GNRs that allows us to examine how GNR electronic structure depends on the chirality of atomically well-defined GNR edges. The GNRs used here were chemically synthesized via carbon nanotube (CNT) unzipping methods that allow flexible variation of GNR width, length, chirality, and substrate. Our STS measurements reveal the presence of 1D GNR edge states whose spatial characteristics closely match theoretical expectations for GNR's of similar width and chirality. We observe width-dependent splitting in the GNR edge state energy bands, providing compelling evidence of their magnetic nature. These results confirm the novel electronic behaviour predicted for GNRs with atomically clean edges, and thus open the door to a whole new area of applications exploiting the unique magnetoelectronic properties of chiral GNRs

    Transition metals on the (0001) surface of graphite: Fundamental aspects of adsorption, diffusion, and morphology

    Get PDF
    In this article, we review basic information about the interaction of transition metal atoms with the (0001) surface of graphite, especially fundamental phenomena related to growth. Those phenomena involve adatom-surface bonding, diffusion, morphology of metal clusters, interactions with steps and sputter-induced defects, condensation, and desorption. General traits emerge which have not been summarized previously. Some of these features are rather surprising when compared with metal-on-metal adsorption and growth. Opportunities for future work are pointed out

    Micromorphology of carbon black

    No full text

    Atomic resolution of defects in graphite studied by STM

    No full text
    Different kinds of defects in graphite with a resolution up to atomic scale have been investigated using STM. Mono-atomic steps on the surface as well as bended graphite layers with height differences less than 0.1 nm originating from defects (steps) in the bulk have been uncovered. The influence of such defects on the appearance of superstructures in the surrounding area is demonstrated. Ribbons, with a few nanometers width and less than 1 nm height, and prismatic loops were resolved. Height variations in the range of a few tenths of nanometer as a result of missed and inserted carbon layers have been revealed. To our knowledge, for the first time defect lines on graphite are presented with an atomic resolution. The defect lines are several microns long and only 1–3 atoms in width
    • …
    corecore