56 research outputs found

    Disc antenna enhanced infrared spectroscopy: From felf-assembled monolayers to membrane proteins

    Get PDF
    Plasmonic surfaces have emerged as a powerful platform for biomolecular sensing applications and can be designed to optimize the plasmonic resonance for probing molecular vibrations at utmost sensitivity. Here, we present a facile procedure to generate metallic microdisc antenna arrays that are employed in surface-enhanced infrared absorption (SEIRA) spectroscopy of biomolecules. Transmission electron microscopy (TEM) grids are used as shadow mask deployed during physical vapor deposition of gold. The resulting disc-shaped antennas exhibit enhancement factors of the vibrational bands of 4 × 104 giving rise to a detection limit <1 femtomol (10–15 mol) of molecules. Surface-bound monolayers of 4-mercaptobenzoic acid show polyelectrolyte behavior when titrated with cations in the aqueous medium. Conformational rigidity of the self-assembled monolayer is validated by density functional theory calculations. The membrane protein sensory rhodopsin II is tethered to the disc antenna arrays and is fully functional as inferred from the light-induced SEIRA difference spectra. As an advance to previous studies, the accessible frequency range is improved and extended into the fingerprint region

    Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins

    Get PDF
    AbstractSurface-enhanced infrared absorption spectroscopy (SEIRAS) represents a variation of conventional infrared spectroscopy and exploits the signal enhancement exerted by the plasmon resonance of nano-structured metal thin films. The surface enhancement decays in about 10nm with the distance from the surface and is, thus, perfectly suited to selectively probe monolayers of biomembranes. Peculiar to membrane proteins is their vectorial functionality, the probing of which requires proper orientation within the membrane. To this end, the metal surface used in SEIRAS is chemically modified to generate an oriented membrane protein film. Monolayers of uniformly oriented membrane proteins are formed by tethering His-tagged proteins to a nickel nitrilo-triacetic acid (Ni-NTA) modified gold surface and SEIRAS commands molecular sensitivity to probe each step of surface modification. The solid surface used as plasmonic substrate for SEIRAS, can also be employed as an electrode to investigate systems where electron transfer reactions are relevant, like e.g. cytochrome c oxidase or plant-type photosystems. Furthermore, the interaction of these membrane proteins with water-soluble proteins, like cytochrome c or hydrogenase, is studied on the molecular level by SEIRAS. The impact of the membrane potential on protein functionality is verified by monitoring light–dark difference spectra of a monolayer of sensory rhodopsin (SRII) at different applied potentials. It is demonstrated that the interpretations of all of these experiments critically depend on the orientation of the solid-supported membrane protein. Finally, future directions of SEIRAS including cellular systems are discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies

    Evaluating aliphatic CF, CF2, and CF3 groups as vibrational Stark effect reporters

    Get PDF
    Given the extensive use of fluorination in molecular design, it is imperative to understand the solvation properties of fluorinated compounds and the impact of the C–F bond on electrostatic interactions. Vibrational spectroscopy can provide direct insights into these interactions by using the C–F bond stretching [v(C–F)] as an electric field probe through the vibrational Stark effect (VSE). In this work, we explore the VSE of the three basic patterns of aliphatic fluorination, i.e., mono-, di-, and trifluorination in CF, CF2, and CF3 groups, respectively, and compare their response to the well-studied aromatic v(C–F). Magnitudes (i.e., Stark tuning rates) and orientations of the difference dipole vectors of the v(C–F)-containing normal modes were determined using density functional theory and a molecular dynamics (MD)-assisted solvatochromic analysis of model compounds in solvents of varying polarity. We obtain Stark tuning rates of 0.2–0.8 cm−1/(MV/cm), with smallest and largest electric field sensitivities for CFaliphatic and CF3,aliphatic, respectively. While average electric fields of solvation were oriented along the main symmetry axis of the CFn, and thus along its static dipole, the Stark tuning rate vectors were tilted by up to 87° potentially enabling to map electrostatics in multiple dimensions. We discuss the influence of conformational heterogeneity on spectral shifts and point out the importance of multipolar and/or polarizable MD force fields to describe the electrostatics of fluorinated molecules. The implications of this work are of direct relevance for studies of fluorinated molecules as found in pharmaceuticals, fluorinated peptides, and proteins

    CO2 efflux from leaf litter focused on spatial and temporal heterogeneity of moisture

    Get PDF
    Leaf litter respiration (R [LL]) was directly measured in situ to evaluate relationships with the water content in leaf litter (WC), which is distributed heterogeneously under natural conditions. To do so, we developed a small, closed static chamber system using an infrared gas analyzer, which can measure instantaneous R [LL]. This study focuses on the measurement of CO2 effluxes from leaf litter using the chamber system in the field and examines the relationship between R [LL] and WC among seven broadleaf species in a temperate forest. The measurements focused on the position of leaves within the litter layer, finding that both R [LL] and WC were significantly higher in the lower layer. The value of R [LL] increased with increasing WC, and the response of R [LL] to WC was similar among all seven species. Moreover, the temporal variation in WC differed among three species and was associated with leaf litter thickness. The observed heterogeneity in WC induced by the physical environment (e.g., position and thickness of leaf litter) affects the variation in WC and, therefore, both R [LL] and the decomposition rates of organic matter in the litter layer

    Confined hydration in nanometer-graded plasma polymer films: Insights from surface-enhanced infrared absorption spectroscopy

    Get PDF
    To shed light on recently explored long-range surface forces generated by subsurface-confined water, the structural characteristics of water molecules penetrating into nanoporous homogeneous and nanograded siloxane plasma polymer films (PPFs) over the time scale of 24 hours are studied by surface-enhanced IR spectroscopy (SEIRAS). Chemically graded PPFs, with embedded hydrophobic-to-hydrophilic gradient, are found to significantly change the average interfacial water orientation due to a unique nanoporous morphology and silanol group coordination. Diffusion of water through the hydrophobic SiO:CH matrix creates an evolution of the coordination of matrix silanol groups, which are eventually deprotonated as soon as the hydration network connects to the aqueous environment. This occurs after -6 hours of water immersion and coincides with the change of average interfacial water orientation. Both effects are present on hydrophobic samples, but are significantly amplified by the presence of the subsurface vertical amphiphilic gradient (Vgrad), whereas enhanced water uptake in oxygen-plasma modified graded PPFs is covering such effects

    Acyl and CO Ligands in the [Fe]‐Hydrogenase Cofactor Scramble upon Photolysis

    Get PDF
    [Fe]-hydrogenase harbors the iron-guanylylpyridinol (FeGP) cofactor, in which the Fe(II) complex contains acyl-carbon, pyridinol-nitrogen, cysteine-thiolate and two CO as ligands. Irradiation with UV-A/blue light decomposes the FeGP cofactor to a 6-carboxymethyl-4-guanylyl-2-pyridone (GP) and other components. Previous in vitro biosynthesis experiments indicated that the acyl- and CO-ligands in the FeGP cofactor can scramble, but whether scrambling occurred during biosynthesis or photolysis was unclear. Here, we demonstrate that the [18O1-carboxy]-group of GP is incorporated into the FeGP cofactor by in vitro biosynthesis. MS/MS analysis of the 18O-labeled FeGP cofactor revealed that the produced [18O1]-acyl group is not exchanged with a CO ligand of the cofactor, indicating that the acyl and CO ligands are scrambled during photolysis rather than biosynthesis, which ruled out any biosynthesis mechanisms allowing acyl/CO ligands scrambling. Time-resolved infrared spectroscopy indicated that an acyl-Fe(CO)3 intermediate is formed during photolysis, in which scrambling of the CO and acyl ligands can occur. This finding also suggests that the light-excited FeGP cofactor has a higher affinity for external CO. These results contribute to our understanding of the biosynthesis and photosensitive properties of this unique H2-activating natural complex

    Near-Infrared Activation of Sensory Rhodopsin II Mediated by NIR-to-Blue Upconversion Nanoparticles

    Get PDF
    Direct optical activation of microbial rhodopsins in deep biological tissue suffers from ineffective light delivery because visible light is strongly scattered and absorbed. NIR light has deeper tissue penetration, but NIR-activation requires a transducer that converts NIR light into visible light in proximity to proteins of interest. Lanthanide-doped upconversion nanoparticles (UCNPs) are ideal transducer as they absorb near-infrared (NIR) light and emit visible light. Therefore, UCNP-assisted excitation of microbial rhodopsins with NIR light has been intensively studied by electrophysiology technique. While electrophysiology is a powerful method to test the functional performance of microbial rhodopsins, conformational changes associated with the NIR light illumination in the presence of UCNPs remain poorly understood. Since UCNPs have generally multiple emission peaks at different wavelengths, it is important to reveal if UCNP-generated visible light induces similar structural changes of microbial rhodopsins as conventional visible light illumination does. Here, we synthesize the lanthanide-doped UCNPs that convert NIR light to blue light. Using these NIR-to-blue UCNPs, we monitor the NIR-triggered conformational changes in sensory rhodopsin II from Natronomonas pharaonis (NpSRII), blue light-sensitive microbial rhodospsin, by FTIR spectroscopy. FTIR difference spectrum of NpSRII was recorded under two different excitation conditions: (ⅰ) with conventional blue light, (ⅱ) with UCNP-generated blue light upon NIR excitation. Both spectra display similar spectral features characteristic of the long-lived M photointermediate state during the photocycle of NpSRII. This study demonstrates that NIR-activation of NpSRII mediated by UCNPs takes place in a similar way to direct blue light activation of NpSRII

    Introducing Aliphatic Fluoropeptides: Perspectives on Folding Properties, Membrane Partition and Proteolytic Stability

    Get PDF
    A de novo designed class of peptide-based fluoropolymers composed of fluorinated aliphatic amino acids as main components is reported. Structural characterization provided insights into fluorine-induced alterations on β-strand to α-helix transition upon an increase in SDS content and revealed the unique formation of PPII structures for trifluorinated fluoropeptides. A combination of circular dichroism, fluorescence-based leaking assays and surface enhanced infrared absorption spectroscopy served to examine the insertion and folding processes into unilamellar vesicles. While partitioning into lipid bilayers, the degree of fluorination conducts a decrease in α-helical content. Furthermore, this study comprises a report on the proteolytic stability of peptides exclusively built up by fluorinated amino acids and proved all sequences to be enzymatically degradable despite the degree of fluorination. Herein presented fluoropeptides as well as the distinctive properties of these artificial and polyfluorinated foldamers with enzyme-degradable features will play a crucial role in the future development of fluorinated peptide-based biomaterials

    a Raman scattering study

    Get PDF
    The longitudinal optical phonon of metallic nanotubes shifts by 23 cm−1 to lower energies when the nanotubes are deposited from a solution onto a substrate. The linewidth increases by 13 cm−1. The changes are explained in terms of shifts in the Fermi energy that influence the Kohn anomaly in the longitudinal optical phonon branch in metallic nanotubes. Using in situ electrochemical Raman measurements we show that the Fermi energy is 0.16 eV below its intrinsic value in metallic nanotubes in solution. Our results impact the application of Raman spectroscopy to distinguish between metallic and semiconducting tubes by examining the high-energy mode line shape

    Biochemical applications of surface-enhanced infrared absorption spectroscopy

    Get PDF
    An overview is presented on the application of surface-enhanced infrared absorption (SEIRA) spectroscopy to biochemical problems. Use of SEIRA results in high surface sensitivity by enhancing the signal of the adsorbed molecule by approximately two orders of magnitude and has the potential to enable new studies, from fundamental aspects to applied sciences. This report surveys studies of DNA and nucleic acid adsorption to gold surfaces, development of immunoassays, electron transfer between metal electrodes and proteins, and protein–protein interactions. Because signal enhancement in SEIRA uses surface properties of the nano-structured metal, the biomaterial must be tethered to the metal without hampering its functionality. Because many biochemical reactions proceed vectorially, their functionality depends on proper orientation of the biomaterial. Thus, surface-modification techniques are addressed that enable control of the proper orientation of proteins on the metal surface. [Figure: see text
    corecore