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Abstract 1 

Leaf litter respiration (RLL) was directly measured in situ to evaluate relationships 2 

with the water content in leaf litter (WC), which is distributed heterogeneously under 3 

natural conditions. To do so, we developed a small, closed static chamber system using 4 

an infrared gas analyzer, which can measure instantaneous RLL. This study focuses on 5 

the measurement of CO2 effluxes from leaf litter using the chamber system in the field 6 

and examines the relationship between RLL and WC among seven broadleaf species in a 7 

temperate forest. The measurements focused on the position of leaves within the litter 8 

layer, finding that both RLL and WC were significantly higher in the lower layer. The 9 

value of RLL increased with increasing WC, and the response of RLL to WC was similar 10 

among all seven species. Moreover, the temporal variation in WC differed among three 11 

species and was associated with leaf litter thickness. The observed heterogeneity in WC 12 

induced by the physical environment (e.g., position and thickness of leaf litter) affects 13 

the variation in WC and therefore both RLL and the decomposition rates of organic 14 

matter in the litter layer. 15 

 16 

Keywords   Leaf litter respiration • Litter decomposition • Moisture • Spatial and 17 

temporal variation・Soil respiration 18 

19 
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Introduction 1 

The litter layer (L layer) usually includes most of the labile carbon and most of 2 

the microbial biomass held in forest soil (Snajdr et al. 2008). The CO2 efflux from the L 3 

layer is one of the main sources of heterotrophic respiration and soil respiration. Hosoe 4 

et al. (2005) reported that the contribution to soil respiration of the CO2 efflux from the 5 

L layer could reach approximately 27% in a larch forest in central Japan. And, the CO2 6 

efflux from the L layer is strongly controlled by moisture conditions. For example, 7 

Cisneros-Dozal et al. (2007) reported that the contribution to soil respiration of the CO2 8 

efflux rate from the L layer varied between 5 and 37% in response to water additions in 9 

a temperate deciduous forest in the United States. The CO2 efflux from the L layer 10 

varies over short periods of time (a few minutes to days), followed by rapid changes in 11 

the environmental conditions of the litter itself (e.g., litter water content, temperature) 12 

(Borken et al. 2003; Cisneros-Dozal et al. 2007). In particular, the frequency of the 13 

wetting and drying of litter may affect the total CO2 efflux rate from the L layer on the 14 

forest floor. 15 

The moisture status of the L layer experiences more dynamic wetting and 16 

drying processes than the lower soil layer, associated with precipitation and 17 

evaporation (Hanson et al. 2003; Jomura et al. 2012). Simard and Main (1982) showed 18 

that leaf litter off the ground (the upper layer) is directly exposed to wind and therefore 19 

dries more quickly than leaf litter on the ground (the lower layer). The moisture status 20 

strongly affects microbial activity, resulting in variation of heterotrophic respiration 21 

(Bunnell et al. 1977; DeForest et al. 2009). Therefore, the vertical distribution of leaf 22 

litter moisture status inside the L layer would affect the decomposition rate. To 23 

examine the characteristics of CO2 efflux from the L layer, detailed and in situ 24 



 4 

measurements of the distribution of moisture status and leaf litter respiration inside 1 

the L layer are required. 2 

In this study, we developed an easy-to-use chamber system which allow us to 3 

measure instantaneous CO2 efflux rates from small leaf litter sample in the field 4 

immediately following sampling. We measured leaf litter respiration (RLL) and leaf 5 

litter water content (WC) focusing on the vertical position of leaf litter within the L 6 

layer, and examined the relationship between RLL and WC within the L layer among 7 

seven temperate broadleaf species. We also examined the temporal variations in WC 8 

and RLL among three species based on litter thickness. From these data, we inferred 9 

how physical environments (position and thickness of leaf litter) influence the 10 

variations in WC and RLL. 11 

12 
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Materials and Methods 1 

1 Site description 2 

This study was conducted in two adjacent temperate forests located in the 3 

Botanical Gardens, Faculty of Science, Osaka City University, Japan (34º76’ N, 135º70’ 4 

E) at 40–120 m elevation above sea level. Forestation was carried out in the garden for 5 

monitoring biomass changes in the 1960s. The sites selected consisted of one deciduous 6 

(1.0 ha) and one evergreen broadleaf forest (1.5 ha). The dominant species in the 7 

deciduous forest was Quercus serrata (Qs), and the evergreen forest was composed of a 8 

mixture of Castanopsis sieboldii (Cs), Lithocarpus edulis (Le), Machilus thunbergii 9 

(Mt), Quercus myrsinaefolia (Qm), Quercus glauca (Qg), and Ilex integra (Ii). 10 

Annual mean temperature and precipitation from 1981 to 2010 were 15.6°C 11 

and 1,324 mm, respectively, which were observed at the nearest weather station 12 

(AMeDAS, Japan Meteorological Agency, Hirakata), 5.2 km away from the botanical 13 

garden. In the study area, June and July are the rainy season, while August is the 14 

driest month. August also had the highest temperature over the study period. Monthly 15 

mean temperatures in August 2009 and 2010 were 27.4°C and 30.1°C, respectively. 16 

 17 

2 Measurement system of RLL 18 

RLL was measured using a static closed-chamber system. The system consisted 19 

of an infrared gas analyzer (IRGA, GMP343; Vaisala Group, Vanta, Finland) attached 20 

to a small cylindrical chamber, was powered by a portable battery (14.8 V), and was 21 

suitable for measuring the respiration rate of small leaf litter samples. Chambers of 22 

three different volumes (0.308 L, 0.375 L, and 0.541 L) were selected according to the 23 

available sample sizes. The interior temperature of the chamber was measured with a 24 
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copper-constantan thermocouple. 1 

The CO2 concentration and temperature inside the chamber were recorded at 2 

1-s intervals using a data logger (GL200A; Graphtec, Kanagawa, Japan). The 3 

measurement period for each sample was approximately 10 min. RLL was calculated 4 

from the measured increase in CO2 concentration using a linear regression of the linear 5 

portion of the resulting data. The IRGA response to a change in CO2 concentration had 6 

a time lag of several tens of seconds due to the permeability of the air filter attached to 7 

the sensor and increased rate of CO2 concentration per unit time was unstable within 8 

one minute after that. Therefore, data from the first 3 min were discarded to maintain 9 

high quality data collection. The respiration data for the middle 5-min period were used 10 

to calculate leaf litter respiration by the following equation: 11 

,60
2.273

2.273 22
2 ×

+
×∆=

DW
M

TV
VCR CO

air
COLL  (1) 12 

where RLL (mgCO2 kg–1 h–1) is CO2 efflux from the leaf litter; ΔCCO2 is the increased rate 13 

of CO2 concentration per unit time (CO2 ppm s–1); V (L) is the volume of the system; Vair 14 

is the standard gas volume (22.41 L mol–1); T is temperature inside the chamber (°C); 15 

MCO2 is the molecular weight of CO2 (44.01 g); and DW is the dry mass of the leaf litter 16 

sample (g). When RLL was very small, the resolution of the IRGA (2–3 ppm) was 17 

insufficient to measure a clear increase in the CO2 concentration. Thus, when the IRGA 18 

measurements indicated increases in the CO2 concentration of less than 3 ppm in the 19 

measurement period (5 minutes), RLL was assumed to be 0 mgCO2 kg–1 h–1. 20 

 21 

3 RLL measurements 22 

(a) Vertical spatial variation in RLL inside the L layer 23 

To evaluate the relationship between RLL and WC among species, we 24 



 7 

measured the RLL and WC of the seven litter species from August 4 to 6, 2009. 1 

Measurement time was set during the daytime period (12:00 to 16:00) to minimize 2 

changes in temperature. The mean temperature in the chamber was 30.1°C. Changes 3 

in temperature during the measurement period were within ± 1.5°C. Leaf litter 4 

samples of Qs were collected from the deciduous forest floor, and these of Cs, Le, Mt, 5 

Qm, Qg, and Ii were collected from the evergreen forest floor (Fig. 1a). The ground at 6 

the evergreen forest was relatively flat and the thickness of the L layer was 7 

approximately 3 cm. In contrast, the terrain of the deciduous forest was complex with 8 

steep slopes, which induced heterogeneous thickness in the L layer and litter 9 

accumulations in a valley. Therefore, we collected leaf litter from the L layer to 10 

approximately 3 cm in the valley. To evaluate the effect of vertical position in the L 11 

layer on RLL and WC, we divided the L layer into three layers (top, middle, and bottom) 12 

and obtained three leaves from each layer. We equally divided the L layer into three 13 

layers. Thus, thickness of one layer was about 1 cm. Care was taken to ensure that the 14 

selected leaves were retaining original form; no obvious symptoms of physical 15 

disintegration. After sampling, the CO2 efflux from the sample (three leaves) was 16 

measured immediately using the chamber system in the field. The total numbers of 17 

measurements made in each layer were 5 and 7, for Qs and the others, respectively. 18 

 19 

(b) Temporal variation in RLL 20 

Leaf litter samples of 3 species (Ce, Le, and Mt) were collected from the 21 

evergreen forest floor in November 2009. To obtain mean WC and RLL in the L layer, 10 22 

dead leaves were formed into one leaf litter stack (Fig. 1b). We prepared two leaf litter 23 

stacks each species. Total six leaf litter stacks were fixed to forest floor using wire pins 24 
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(diameter 2 mm) in November 2009. To examine the temporal changes in RLL according 1 

to changes of WC among 3 species, at nine months after setting of leaf litter stacks, we 2 

measured WC and RLL on 4 and 7 days (16 and 19 in August 2010) after rainfall (41.0 3 

mm day–1), respectively. The WC and RLL were measured from one leaf separated from 4 

a set of 10 dead leaves composing leaf litter stack. The WC and RLL were averaged from 5 

10 dead leaves composing one leaf litter stack. The mean temperature in the chamber 6 

was 32.3°C. Changes in temperature during the measurement were within ± 1.5°C. 7 

 8 

4 Sample treatment after RLL measurements 9 

After each RLL measurement, litter samples were immediately enclosed in 10 

plastic bags. The fresh weight of leaf litter was measured in the laboratory within 24 h 11 

after sampling. Leaf litter samples were oven dried at 60°C for 48 h, and WC was 12 

calculated using 13 

,)(
DW

DWFWWC −
=  (2) 14 

where FW is the fresh mass of the leaf litter sample (g), and DW is the dry mass of the 15 

leaf litter sample (g). The area of leaf litter was measured with a LI-COR LI-3000A leaf 16 

area meter (Lincoln, NE, USA). Total C and N contents were measured using the 17 

combustion method in an NC-analyzer (NC-900, Sumitomo Chemical Co., Osaka 18 

Japan). Nutrients were determined from five samples randomly selected at each layer 19 

in each species. 20 

21 
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Results  1 

Values of WC, RLL, and the C:N ratio inside the L layer clearly differed in 2 

association with their vertical position in the leaf litter (Fig. 2). Both WC and RLL were 3 

significantly higher in the lower layers (Tukey’s HSD, p < 0.05). Across all seven species, 4 

the C/N ratios of the bottom layer were lower than those of the top layer. The 5 

differences between the bottom and top layer of each species were significant (Tukey’s 6 

HSD, p < 0.05) except for Qs. There was no significant difference in the variations in 7 

RLL and WC between species, whereas there was a significant difference in the C:N 8 

ratio between species (one-way ANOVA, p < 0.001). 9 

Even though the RLL measurements were conducted under constant 10 

temperature (30.1 ± 1.5°C), RLL had large variations that followed the WC variations 11 

(Fig. 3). The ranges in RLL and WC of the seven species (Qs, Cs, Le, Mt, Qm, Qg, and Ii) 12 

were 40–1568, 0–2356, 19–1398, 0–1493, 38–1813, 0–1245, and 0–1658 mgCO2 kg–1 h–1 , 13 

and 0.19–2.12, 0.13–1.86, 0.14–1.93, 0.04–2.29, 0.17–2.66, 0.14–2.92, and 0.14–2.58 g 14 

g–1, respectively. The value of RLL was occasionally near zero below an WC value of 0.3 g 15 

g–1. Across all seven species, RLL was positively correlated with WC (p < 0.001), and the 16 

relationship did not differ significantly among the seven species (analysis of covariance, 17 

p = 0.07).  18 

The temporal variation in mean WC among the three species was different 19 

(Fig. 4) and associated with the specific leaf surface area (Cs: 87.4, Mt: 81.1 and Le: 20 

69.4 cm2 g–1). The mean WC values of Cs, Mt, and Le 4 and 7 days after rainfall were 21 

0.22–0.12, 0.36–0.21, and 0.82–0.16 g g–1, respectively. Compared with thinner leaf 22 

litter (e.g., Cs), thicker leaf litter (e.g., Le) dried more slowly. Following the variation in 23 

WC, RLL varied temporally among the three litter species. The mean RLL values of Cs, 24 



 10 

Mt, and Le 4 and 7 days after rainfall were 109–100, 253–94, and 562–81 mgCO2 kg–1 1 

h–1, respectively. At 4 days after rainfall, the mean RLL of the thicker leaf litter (e.g., Le) 2 

was 5.2 times as large as that of the thinner leaf litter (e.g., Cs). These mean RLL 3 

similarly varied within range of RLL seen on Fig 3. 4 

5 
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Discussion and Conclusion 1 

The measured RLL in all seven species had large range, from zero to 2356 2 

mgCO2 kg–1 h–1, with a mean value of 546 mgCO2 kg–1 h–1 (Fig. 3). Dilly and Munch 3 

(1996) reported that the RLL of black alder litter ranged from approximately 100 to 700 4 

mgCO2 kg–1 h–1 at 22°C when WC was 2.5 g g–1, and that it temporally varied during the 5 

course of decomposition. Coxson and Parkinson (1987) showed that the RLL of aspen 6 

woodland litter ranged from approximately 50 to 550 mgCO2 kg–1 h–1 at 18°C when WC 7 

ranged from 0.3 to 2.7 g g–1. Their ranges included the average values of this study. 8 

However, our maximum RLL was larger than theirs. We expect that their ranges of RLL 9 

would be limited due to the laboratory experiments under a specific environment 10 

conditions (e.g., WC and temperature). Our maximum RLL of each species (1245–2356 11 

mgCO2 kg–1 h–1) means that 1.6–3.1% of the substrate could be consumed by respiration 12 

only in one day, assuming that the carbon ratio in leaf litter is 0.5. On the other hand, 13 

even at high temperature, RLL widely varied and could reach near zero under specific 14 

spatial and temporal condition (Figs. 3, 4). Therefore, large spatial and temporal 15 

changes in RLL could occur in the L layer, and this RLL variation would have a high 16 

potential to influence the spatial and temporal variation in soil respiration and 17 

heterotrophic respiration. 18 

The magnitude of RLL was strongly influenced by WC (Figs. 3, 4) and WC 19 

varied both spatially and temporally. First, focusing on the cause of WC variation 20 

inside the L layer, WC  was highly related to the vertical position of leaf litter within 21 

the L layer (Fig. 2). The upper layer tended to be drier than the lower layer. As a result, 22 

RLL widely varied between the top and bottom layers and followed the distribution of 23 

WC. Taylor and Parkinso (1988) indicated that the upper layer of the L layer was drier 24 



 12 

under repeated drying and wetting cycles because this layer was exposed on the surface 1 

and the lower layer dried more slowly. Such vertical distribution in WC inside the L 2 

layer would affect the magnitude of integrated RLL among layers. As a result of 3 

differing moisture histories among layers, a gradient of the degree of decomposition 4 

presented by the C:N ratio would occur within the L layer (Fig. 2). 5 

Second, WC variation was related with leaf litter thickness (Fig. 4). The larger 6 

the specific surface area of substrate (e.g., the thinner leaf litter), the faster it dried, as 7 

is well known in the field of fire science (Fosberg 1971). Such physical characteristics of 8 

litter species affect the wetting and drying cycle of WC and exhibit different temporal 9 

variations in RLL among litter species. And, our results showed that the response of RLL 10 

to WC was similar among litter species (Fig. 3) despite interspecies differences in 11 

chemical quality (C:N ratio). From these results, we speculated that the moisture 12 

history of a substrate would finally result in difference of the annual RLL and the 13 

decomposition rates between plant species. Virzo De Santo et al. (1993) also reported 14 

that the higher ability of leaf litter to retain water would result in the higher 15 

decomposition rate. The finding of a relationship between decomposition rate and 16 

moisture history was difficult due to many technical aspects. To understand the 17 

decomposition process in the forest floor, it is important to monitor moisture conditions 18 

in the litter itself, while taking into account physical environments as identified above 19 

(position and thickness of leaf litter). 20 

Interest is increasing in the short-term factors that control heterotrophic 21 

respiration because of the potential for mitigating climate change, including 22 

precipitation and temperature. After rainfall, RLL decreases with drying leaf litter, and 23 

the RLL of all species reached near zero below WC of 0.3 g g–1. As a result, instantaneous 24 



 13 

RLL showed a wide distribution even at the same temperature condition. Direct RLL 1 

measurement, a measure of microbial activity, can indicate dynamic changes in 2 

decomposition processes responding to variations in environmental factors. Our data 3 

suggest that history of such environmental condition result in interspecies differences 4 

of the decomposition rate. On the other hand, many mass loss studies reported that 5 

differences in litter quality between plant species influence the decomposition rate 6 

(Hobbie et al. 2006; Salinas 2011). Microbes are directly responsible for majority of 7 

litter decomposition and their biomass and community structure could be influenced by 8 

the quality of individual plant species (Bardgett and Walker 2004; Ayres et al. 2006). To 9 

integrate the effects of environmental conditions and litter quality on decomposition 10 

processes, cross-measurement and validation of RLL and microbial composition are 11 

required. 12 

13 
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Figure legends 1 

 2 

Fig. 1  Illustration of RLL measurements. Measurements of RLL were conducted by 3 

sampling leaf litter from (a) seven species and (b) three species. (a) The L layer was 4 

categorized into three layers, and RLL was measured from three leaves in each layer. (b) 5 

A set of 10 dead leaves formed into vertical stacks was fixed to forest floor using wire 6 

pin, and RLL was measured from a single leaf litter separated from the leaf litter stacks. 7 

 8 

Fig. 2  Vertical spatial variation in the mean RLL, WC, and C:N ratio inside the L layer 9 

(top, middle, and bottom layers) among the seven species. Bars indicate standard error. 10 

Different letters on the bar indicate significant differences among three layers (Tukey’s 11 

HSD, p < 0.05). 12 

 13 

Fig. 3  Relationships between RLL and WC of the seven species. 14 

 15 

Fig. 4  Temporal variation in mean RLL and WC among three species, 4 to 7 days 16 

following rainfall (41.0 mm day–1), measured in August 2010. Mean RLL and WC were 17 

calculated from 10 dead leaves composing one leaf litter stack (Fig. 1b). Bars indicate 18 

standard error. Closed circles indicate the relationships between RLL and WC as seen in 19 

Fig. 3. 20 

 21 
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 23 

 24 
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