251 research outputs found

    New engineering approach for the development and demonstration of a multi-purpose platform for the Blue Growth Economy

    Get PDF
    Aquaculture is currently the fastest growing food sector in the world and the open oceans are seen as one of the most likely areas for large scale expansion [1], [2], [3]. The global demand for seafood is continuing to rise sharply, driven by both population growth and increased per capita consumption, whilst wild capture fisheries are constrained in their potential to produce more seafood. A recently funded EC project, the Blue Growth Farm BGF (GA n. 774426, 1st June 2018 ÷ 30th September 2021) aims at contributing to this world need with an original solution. The Blue Growth Farm proposes an efficient, cost competitive and environmentally friendly multi purpose offshore farm concept based on a modular floating structure, moored to the seabed, meeting requirements of efficiency, cost-competitiveness and environmental friendless, where automated aquaculture and renewable energy production systems are integrated and engineered for profitable applications in the open sea. In the present paper, the overall engineering approach developed to carry out the research work is presented, described and justified. Different technical and scientific challenges are addressed through an integrated industrial engineering design approach, where all disciplines are tuned to achieve the Blue Growth Farm main targets, represented by: i) guaranteeing expected nominal fish production thanks to advanced automation and remote control capabilities; ii) minimizing the pollution introduced at marine ecosystem level when exploiting the marine natural resources, whilst increasing the social acceptance and users community agreement; iii) maximizing the electricity production in the Blue Growth Farm potential installation area ecosystem to provide energy supply to the on board electrical equipment and to dispatch the extra produced electric energy to the land network. Preliminary engineering design results are promising to demonstrate effective increase of safety and efficiency by reducing on board human effort and consequently risks at offshore, thus to make commercial scale open ocean farming a reality

    Anxiolytic activity of pyridoindole derivatives SMe1EC2 and SMe1M2: behavioral analysis using rat model

    Get PDF
    Anxiety and mood disorders have become very significant affections in the last decades. According to WHO at least one mental disease occurred per year in 27% of EU inhabitants (more than 82 mil. people). It is estimated that by 2020, depression will be the main cause of morbidity in the developed countries. These circumstances call for research for new prospective drugs with anxiolytic and antidepressive properties exhibiting no toxicity and withdrawal effect and possessing beneficial properties, like antioxidant and/or neuroprotective effects. The aim of this study was to obtain information about psychopharmacological properties of pyridoindole derivatives SMe1EC2 and SMe1M2, using non-invasive behavioral methods in rats

    multi‐patient dose synthesis of [18F]Flumazenil via a copper‐mediated 18F‐fluorination

    Get PDF
    Background Flumazenil (FMZ) is a functionally silent imidazobenzodiazepine which binds to the benzodiazepine binding site of approximately 75% of the brain γ-aminobutyric acid-A receptors (GABAARs). Positron Emission Tomography (PET) imaging of the GABAARs with [11C]FMZ has been used to evidence alterations in neuronal density, to assess target engagement of novel pharmacological agents, and to study disorders such as epilepsy and Huntington’s disease. Despite the potential of FMZ PET imaging the short half-life (t1/2) of carbon-11 (20 min) has limited the more widespread clinical use of [11C]FMZ. The fluorine-18 (18F) isotopologue with a longer t1/2 (110 min) is ideally suited to address this drawback. However, the majority of current radiochemical methods for the synthesis of [18F]FMZ are non-trivial and low yielding. We report a robust, automated protocol that is good manufacturing practice (GMP) compatible, and yields multi-patient doses of [18F]FMZ. Results The fully automated synthesis was developed on the Trasis AllinOne (AIO) platform using a single-use cassette. [18F]FMZ was synthesized in a one-step procedure from [18F]fluoride, via a copper-mediated 18F-fluorination of a boronate ester precursor. Purification was performed by semi-preparative radio-HPLC and the collected fraction formulated directly into the final product vial. The overall process from start of synthesis to delivery of product is approximately 55 min. Starting with an initial activity of 23.6 ± 5.8 GBq (n = 3) activity yields of [18F]FMZ were 8.0 ± 1 GBq (n = 3). The synthesis was successfully reproduced at two independent sites, where the product passed quality control release criteria in line with the European Pharmacopoeia standards and ICH Q3D(R1) guidelines to be suitable for human use. Conclusion Reported is a fully automated cassette-based synthesis of [18F]FMZ that is Good Manufacturing Practice (GMP) compatible and produces multi-patient doses of [18F]FMZ

    Assessing rugby place kick performance from initial ball flight kinematics: development, validation and application of a new measure

    Get PDF
    The appropriate determination of performance outcome is critical when appraising a performer’s technique. Previous studies of rugby place kicking technique have typically assessed performance based on ball velocity, but this is not the sole requirement. Therefore, a mathematical model of rugby place kick ball flight was developed to yield a single measure more representative of true performance. The model, which requires only initial ball flight kinematics, was calibrated and validated using empirical place kick data, and found to predict ball position with a mean error of 4.0% after 22 m of ball flight. The model was then applied to the performances of 33 place kickers. The predicted maximum distance, a single performance measure which accounted for initial ball velocity magnitude and direction, and spin, was determined using the model and was compared against ball velocity magnitude. A moderate association in the rank-order of the kicks between these two measures (ρ = 0.52) revealed that the relative success of the kicks would be assessed differently with each measure. The developed model provides a representative measure of place kick performance that is understandable for coaches, and can be used to predict changes in performance outcome under different ball launch or environmental conditions

    Lithium suppression of tau induces brain iron accumulation and neurodegeneration

    Get PDF
    Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer’s disease), and may explain lithium-associated motor symptoms in susceptible patients

    Structural Analysis of Prolyl Oligopeptidases Using Molecular Docking and Dynamics: Insights into Conformational Changes and Ligand Binding

    Get PDF
    Prolyl oligopeptidase (POP) is considered as an important pharmaceutical target for the treatment of numerous diseases. Despite enormous studies on various aspects of POPs structure and function still some of the questions are intriguing like conformational dynamics of the protein and interplay between ligand entry/egress. Here, we have used molecular modeling and docking based approaches to unravel questions like differences in ligand binding affinities in three POP species (porcine, human and A. thaliana). Despite high sequence and structural similarity, they possess different affinities for the ligands. Interestingly, human POP was found to be more specific, selective and incapable of binding to a few planar ligands which showed extrapolation of porcine POP in human context is more complicated. Possible routes for substrate entry and product egress were also investigated by detailed analyses of molecular dynamics (MD) simulations for the three proteins. Trajectory analysis of bound and unbound forms of three species showed differences in conformational dynamics, especially variations in β-propeller pore size, which was found to be hidden by five lysine residues present on blades one and seven. During simulation, β-propeller pore size was increased by ∼2 Å in porcine ligand-bound form which might act as a passage for smaller product movement as free energy barrier was reduced, while there were no significant changes in human and A. thaliana POPs. We also suggest that these differences in pore size could lead to fundamental differences in mode of product egress among three species. This analysis also showed some functionally important residues which can be used further for in vitro mutagenesis and inhibitor design. This study can help us in better understanding of the etiology of POPs in several neurodegenerative diseases

    Regulation of Oxidative Stress Response by CosR, an Essential Response Regulator in Campylobacter jejuni

    Get PDF
    CosR (Campylobacter oxidative stress regulator; Cj0355c) is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE) was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA) or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator) but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni
    corecore