34 research outputs found

    Relationships between Membrane Binding, Affinity and Cell Internalization Efficacy of a Cell-Penetrating Peptide: Penetratin as a Case Study

    Get PDF
    Penetratin is a positively charged cell-penetrating peptide (CPP) that has the ability to bind negatively charged membrane components, such as glycosaminoglycans and anionic lipids. Whether this primary interaction of penetratin with these cell surface components implies that the peptide will be further internalized is not clear.Using mass spectrometry, the amount of internalized and membrane bound penetratin remaining after washings, were quantified in three different cell lines: wild type (WT), glycosaminoglycans- (GAG(neg)) and sialic acid-deficient (SA(neg)) cells. Additionally, the affinity and kinetics of the interaction of penetratin to membrane models composed of pure lipids and membrane fragments from the referred cell lines was investigated, as well as the thermodynamics of such interactions using plasmon resonance and calorimetry.Penetratin internalized with the same efficacy in the three cell lines at 1 ”M, but was better internalized at 10 ”M in SA(neg)>WT>GAG(neg). The heat released by the interaction of penetratin with these cells followed the ranking order of internalization efficiency. Penetratin had an affinity of 10 nM for WT cells and ”M for SA(neg) and GAG(neg) cells and model membrane of phospholipids. The remaining membrane-bound penetratin after cells washings was similar in WT and GAG(neg) cells, which suggested that these binding sites relied on membrane phospholipids. The interaction of penetratin with carbohydrates was more superficial and reversible while it was stronger with phospholipids, likely because the peptide can intercalate between the fatty acid chains.These results show that accumulation and high-affinity binding of penetratin at the cell-surface do not reflect the internalization efficacy of the peptide. Altogether, these data further support translocation (membrane phospholipids interaction) as being the internalization pathway used by penetratin at low micromolecular concentration, while endocytosis is activated at higher concentration and requires accumulation of the peptide on GAG and GAG clustering

    Stochastic combinations of actin regulatory proteins are sufficient to drive filopodia formation.

    Get PDF
    Assemblies of actin and its regulators underlie the dynamic morphology of all eukaryotic cells. To understand how actin regulatory proteins work together to generate actin-rich structures such as filopodia, we analyzed the localization of diverse actin regulators within filopodia in Drosophila embryos and in a complementary in vitro system of filopodia-like structures (FLSs). We found that the composition of the regulatory protein complex where actin is incorporated (the filopodial tip complex) is remarkably heterogeneous both in vivo and in vitro. Our data reveal that different pairs of proteins correlate with each other and with actin bundle length, suggesting the presence of functional subcomplexes. This is consistent with a theoretical framework where three or more redundant subcomplexes join the tip complex stochastically, with any two being sufficient to drive filopodia formation. We provide an explanation for the observed heterogeneity and suggest that a mechanism based on multiple components allows stereotypical filopodial dynamics to arise from diverse upstream signaling pathways.Herchel Smith Fellowship, Funai Foundation scholarship, Austrian Science Fun

    Stochastic combinations of actin regulatory proteins are sufficient to drive filopodia formation

    Get PDF
    Assemblies of actin and its regulators underlie the dynamic morphology of all eukaryotic cells. To understand how actin regulatory proteins work together to generate actin-rich structures such as filopodia, we analyzed the localization of diverse actin regulators within filopodia in Drosophila embryos and in a complementary in vitro system of filopodia-like structures (FLSs). We found that the composition of the regulatory protein complex where actin is incorporated (the filopodial tip complex) is remarkably heterogeneous both in vivo and in vitro. Our data reveal that different pairs of proteins correlate with each other and with actin bundle length, suggesting the presence of functional subcomplexes. This is consistent with a theoretical framework where three or more redundant subcomplexes join the tip complex stochastically, with any two being sufficient to drive filopodia formation. We provide an explanation for the observed heterogeneity and suggest that a mechanism based on multiple components allows stereotypical filopodial dynamics to arise from diverse upstream signaling pathways

    Control of actin polymerization via the coincidence of phosphoinositides and high membrane curvature

    Get PDF
    The conditional use of actin during clathrin-mediated endocytosis in mammalian cells suggests that the cell controls whether and how actin is used. Using a combination of biochemical reconstitution and mammalian cell culture, we elucidate a mechanism by which the coincidence of PI(4,5)P2 and PI(3)P in a curved vesicle triggers actin polymerization. At clathrin-coated pits, PI(3)P is produced by the INPP4A hydrolysis of PI(3,4)P2, and this is necessary for actin-driven endocytosis. Both Cdc42⋅guanosine triphosphate and SNX9 activate N-WASP–WIP- and Arp2/3-mediated actin nucleation. Membrane curvature, PI(4,5)P2, and PI(3)P signals are needed for SNX9 assembly via its PX–BAR domain, whereas signaling through Cdc42 is activated by PI(4,5)P2 alone. INPP4A activity is stimulated by high membrane curvature and synergizes with SNX9 BAR domain binding in a process we call curvature cascade amplification. We show that the SNX9-driven actin comets that arise on human disease–associated oculocerebrorenal syndrome of Lowe (OCRL) deficiencies are reduced by inhibiting PI(3)P production, suggesting PI(3)P kinase inhibitors as a therapeutic strategy in Lowe syndrome.J.L. Gallop is supported by a Wellcome Trust Research Career Development Fellowship (grant WT095829AIA). F.  Daste, A.  Walrant, J.R. Gadsby, and J. Mason are supported by an H2020 European Research Council Starting Grant (281971) awarded to J.L. Gallop. Gurdon Institute funding is provided by the Wellcome Trust (grant 092096) and Cancer Research UK (grant C6946/A14492). The Swedish Medical Research Council and the Swedish Foundation for Strategic Research supported the work of M.R. Holst and R. Lundmark. S.F. Lee is funded by a Royal Society University Research Fellowship (grant UF120277). M. Mettlen is funded by grant MH73125 to Sandra L. Schmid (University of Texas Southwestern Medical Center)

    Interactions entre peptides vecteurs et membranes modÚles et biologiques (le cas de trois peptides synthétiques)

    No full text
    PARIS-BIUSJ-Biologie recherche (751052107) / SudocSudocFranceF

    Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides

    No full text
    International audienceAbstract Trp is unique among the amino acids since it is involved in many different types of noncovalent interactions such as electrostatic and hydrophobic ones, but also in π-π, π-cation, π-anion and π-ion pair interactions. In membranotropic peptides and proteins, Trp locates preferentially at the water-membrane interface. In antimicrobial or cell-penetrating peptides (AMPs and CPPs respectively), Trp is well-known for its strong role in the capacity of these peptides to interact and affect the membrane organisation of both bacteria and animal cells at the level of the lipid bilayer. This essential amino acid can however be involved in other types of interactions, not only with lipids, but also with other membrane partners, that are crucial to understand the functional roles of membranotropic peptides. This review is focused on this latter less known role of Trp and describes in details, both in qualitative and quantitative ways: (i) the physico-chemical properties of Trp; (ii) its effect in CPP internalisation; (iii) its importance in AMP activity; (iv) its role in the interaction of AMPs with glycoconjugates or lipids in bacteria membranes and the consequences on the activity of the peptides; (v) its role in the interaction of CPPs with negatively charged polysaccharides or lipids of animal membranes and the consequences on the activity of the peptides. We intend to bring highlights of the physico-chemical properties of Trp and describe its extensive possibilities of interactions, not only at the well-known level of the lipid bilayer, but with other less considered cell membrane components, such as carbohydrates and the extracellular matrix. The focus on these interactions will allow the reader to reevaluate reported studies. Altogether, our review gathers dedicated studies to show how unique are Trp properties, which should be taken into account to design future membranotropic peptides with expected antimicrobial or cell-penetrating activity

    Tryptophan, an Amino-Acid Endowed with Unique Properties and Its Many Roles in Membrane Proteins

    No full text
    International audienceTryptophan is an aromatic amino acid with unique physico-chemical properties. It is often encountered in membrane proteins, especially at the level of the water/bilayer interface. It plays a role in membrane protein stabilization, anchoring and orientation in lipid bilayers. It has a hydrophobic character but can also engage in many types of interactions, such as π–cation or hydrogen bonds. In this review, we give an overview of the role of tryptophan in membrane proteins and a more detailed description of the underlying noncovalent interactions it can engage in with membrane partners

    Long-Lived States in Hyperpolarized Deuterated Methyl Groups Reveal Weak Binding of Small Molecules to Proteins

    No full text
    International audienceWe introduce a method for the detection of weak interactions of small molecules such as metabolites or medicaments that contain deuterated methyl groups with proteins in solution. The technique relies on long-lived imbalances of spin state populations, which are generated by dissolution dynamic nuclear polarization (D-DNP) and feature lifetimes that depend on the frequency of internal rotation of deuterated methyl groups. We demonstrate the technique for interactions between deuterated dimethyl sulfoxide (DMSO-d6) and bovine serum albumin (BSA) or trypsin, where the methyl group rotation is slowed down upon protein binding, which causes a marked reduction in the lifetime of the population imbalances

    Binding and crossing: Methods for the characterization of membrane-active peptides interactions with membranes at the molecular level

    No full text
    International audienceAntimicrobial and cell-penetrating peptides have been the object of extensive studies for more than 60 years. Initially these two families were studied separately, and more recently parallels have been drawn. These studies have given rise to numerous methodological developments both in terms of observation techniques and membrane models. This review presents some of the most recent original and innovative developments in this field, namely droplet interface bilayers (DIBs), new fluorescence approaches, force measurements, and photolabelling
    corecore