5,432 research outputs found

    Bayesian model comparison for compartmental models with applications in positron emission tomography

    Get PDF
    We develop strategies for Bayesian modelling as well as model comparison, averaging and selection for compartmental models with particular emphasis on those that occur in the analysis of positron emission tomography (PET) data. Both modelling and computational issues are considered. Biophysically inspired informative priors are developed for the problem at hand, and by comparison with default vague priors it is shown that the proposed modelling is not overly sensitive to prior specification. It is also shown that an additive normal error structure does not describe measured PET data well, despite being very widely used, and that within a simple Bayesian framework simultaneous parameter estimation and model comparison can be performed with a more general noise model. The proposed approach is compared with standard techniques using both simulated and real data. In addition to good, robust estimation performance, the proposed technique provides, automatically, a characterisation of the uncertainty in the resulting estimates which can be considerable in applications such as PET

    Dynamic filtering of static dipoles in magnetoencephalography

    Get PDF
    We consider the problem of estimating neural activity from measurements of the magnetic fields recorded by magnetoencephalography. We exploit the temporal structure of the problem and model the neural current as a collection of evolving current dipoles, which appear and disappear, but whose locations are constant throughout their lifetime. This fully reflects the physiological interpretation of the model. In order to conduct inference under this proposed model, it was necessary to develop an algorithm based around state-of-the-art sequential Monte Carlo methods employing carefully designed importance distributions. Previous work employed a bootstrap filter and an artificial dynamic structure where dipoles performed a random walk in space, yielding nonphysical artefacts in the reconstructions; such artefacts are not observed when using the proposed model. The algorithm is validated with simulated data, in which it provided an average localisation error which is approximately half that of the bootstrap filter. An application to complex real data derived from a somatosensory experiment is presented. Assessment of model fit via marginal likelihood showed a clear preference for the proposed model and the associated reconstructions show better localisation

    Strong Decays of Strange Quarkonia

    Get PDF
    In this paper we evaluate strong decay amplitudes and partial widths of strange mesons (strangeonia and kaonia) in the 3P0 decay model. We give numerical results for all energetically allowed open-flavor two-body decay modes of all nsbar and ssbar strange mesons in the 1S, 2S, 3S, 1P, 2P, 1D and 1F multiplets, comprising strong decays of a total of 43 resonances into 525 two-body modes, with 891 numerically evaluated amplitudes. This set of resonances includes all strange qqbar states with allowed strong decays expected in the quark model up to ca. 2.2 GeV. We use standard nonrelativistic quark model SHO wavefunctions to evaluate these amplitudes, and quote numerical results for all amplitudes present in each decay mode. We also discuss the status of the associated experimental candidates, and note which states and decay modes would be especially interesting for future experimental study at hadronic, e+e- and photoproduction facilities. These results should also be useful in distinguishing conventional quark model mesons from exotica such as glueballs and hybrids through their strong decays.Comment: 69 pages, 5 figures, 39 table

    Small optic suspensions for Advanced LIGO input optics and other precision optical experiments

    Get PDF
    We report on the design and performance of small optic suspensions developed to suppress seismic motion of out-of-cavity optics in the Input Optics subsystem of the Advanced LIGO interferometric gravitational wave detector. These compact single stage suspensions provide isolation in all six degrees of freedom of the optic, local sensing and actuation in three of them, and passive damping for the other three

    Weight Watchers on prescription: an observational study of weight change among adults referred to Weight Watchers by the NHS.

    Get PDF
    BACKGROUND: The scale of overweight and obesity in the UK places a considerable burden on the NHS. In some areas the NHS has formed partnerships with commercial companies to offer weight management services, but there has been little evaluation of these schemes.This study is an independent audit of the Weight Watchers NHS Referral scheme and evaluates the weight change of obese and overweight adults referred to Weight Watchers (WW) by the NHS. METHOD: Data was obtained from the WW NHS Referral Scheme database for 29,326 referral courses started after 2nd April 2007 and ending before 6th October 2009 [90% female; median age 49 years (IQR 38-61 years); median BMI 35.1 kg/m2 (IQR 31.8-39.5 kg/m2). Participants received vouchers (funded by the PCT following referral by a healthcare professional) to attend 12 WW meetings. Body weight was measured at WW meetings and relayed to the central database. RESULTS: Median weight change for all referrals was -2.8 kg [IQR -5.9--0.7 kg] representing -3.1% initial weight. 33% of all courses resulted in loss of ≥5% initial weight. 54% of courses were completed. Median weight change for those completing a first course was -5.4 kg [IQR -7.8--3.1 kg] or -5.6% of initial weight. 57% lost ≥5% initial weight. CONCLUSIONS: A third of all patients who were referred to WW through the WW NHS Referral Scheme and started a 12 session course achieved ≥5% weight loss, which is usually associated with clinical benefits. This is the largest audit of NHS referral to a commercial weight loss programme in the UK and results are comparable with other options for weight loss available through primary care.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Final State Interactions in Hadronic D decays

    Full text link
    We show that the large corrections due to final state interactions (FSI) in the D^+\to \pi^-\pi^+\pi^+, D^+_s\to \pi^-\pi^+\pi^+, and D^+\to K^-\pi^+\pi^+ decays can be accounted for by invoking scattering amplitudes in agreement with those derived from phase shifts studies. In this way, broad/overlapping resonances in S-waves are properly treated and the phase motions of the transition amplitudes are driven by the corresponding scattering matrix elements determined in many other experiments. This is an important step forward in resolving the puzzle of the FSI in these decays. We also discuss why the \sigma and \kappa resonances, hardly visible in scattering experiments, are much more prominent and clearly visible in these decays without destroying the agreement with the experimental \pi\pi and K\pi low energy S-wave phase shifts.Comment: 22 pages, 6 figures, 5 tables. Minor changes. We extend the discusion when quoting a reference and we include a new one. Some typos are fixe

    Bifurcations of periodic orbits with spatio-temporal symmetries

    Get PDF
    Motivated by recent analytical and numerical work on two- and three-dimensional convection with imposed spatial periodicity, we analyse three examples of bifurcations from a continuous group orbit of spatio-temporally symmetric periodic solutions of partial differential equations. Our approach is based on centre manifold reduction for maps, and is in the spirit of earlier work by Iooss (1986) on bifurcations of group orbits of spatially symmetric equilibria. Two examples, two-dimensional pulsating waves (PW) and three-dimensional alternating pulsating waves (APW), have discrete spatio-temporal symmetries characterized by the cyclic groups Z_n, n=2 (PW) and n=4 (APW). These symmetries force the Poincare' return map M to be the nth iterate of a map G: M=G^n. The group orbits of PW and APW are generated by translations in the horizontal directions and correspond to a circle and a two-torus, respectively. An instability of pulsating waves can lead to solutions that drift along the group orbit, while bifurcations with Floquet multiplier +1 of alternating pulsating waves do not lead to drifting solutions. The third example we consider, alternating rolls, has the spatio-temporal symmetry of alternating pulsating waves as well as being invariant under reflections in two vertical planes. This leads to the possibility of a doubling of the marginal Floquet multiplier and of bifurcation to two distinct types of drifting solutions. We conclude by proposing a systematic way of analysing steady-state bifurcations of periodic orbits with discrete spatio-temporal symmetries, based on applying the equivariant branching lemma to the irreducible representations of the spatio-temporal symmetry group of the periodic orbit, and on the normal form results of Lamb (1996). This general approach is relevant to other pattern formation problems, and contributes to our understanding of the transition from ordered to disordered behaviour in pattern-forming systems
    corecore