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We develop strategies for Bayesian modeling as well as model comparison, averaging and
selection for compartmental models with particular emphasis on those that occur in the
analysis of Positron Emission Tomography (PET) data. Both modeling and computational
issues are considered.

Biophysically-inspired informative priors are developed for the problem at hand, and by
comparison with default vague priors it is shown that the proposed modeling is not overly
sensitive to prior specification. It is also shown that an additive normal error structure does
not describe measured PET data well, despite being very widely used, and that within a
simple Bayesian framework simultaneous parameter estimation and model comparison can be
performed with a more general noise model. The proposed approach is compared to standard
techniques using both simulated and real data. In addition to good, robust estimation perfor-
mance, the proposed technique provides, automatically, a characterisation of the uncertainty
in the resulting estimates which can be considerable in applications such as PET.
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1. Introduction

In a very wide range of scientific situations, the comparison of different candidate
models for observed data to assess the relative compatibility of models for data,
to permit Bayesian model averaging or to perform model selection, is necessary.
Various factors can make the model comparison process difficult: the scarcity of
data and the presence of unknown parameters are two common difficulties and both
are relevant in the context of compartmental models. For example, when analysing
Positron Emission Tomography (PET) data acquired from the brain, a topic of
substantial interest to neuroscientists, the number of observations available in each
time course is usually between twenty and thirty, while there can be ten or more
parameters to be estimated (for example, see [35]).
The current work studies the application of Bayesian statistical methods to pa-

rameter estimation, model comparison, and model selection for compartmental
models. Those compartmental models that arise in PET applications are of partic-
ular interest and are studied in greater depth in the latter part of the paper. The
combination of maximum likelihood parameter estimation and either the Akaike
Information Criterion (AIC), the Bayesian Information Criterion (BIC) or one of
their variants for model selection is universal in this field — see [47] — we compare
these strategies with the proposed approach using both simulated data and real
data from a PET [11C]diprenorphine study.
Although compartmental models arise also in numerous other areas and have

been extensively studied, it would seem that there are substantial differences in
the inferential questions of interest. The inference of interest in the context of PET
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is introduced in the next section together with other general background material.
It is essential that any approach to this problem is robust, requires essentially
no tuning and is computationally efficient as it is necessary to apply it to many
hundreds of thousands of individual time series in any PET application.

2. Background

2.1 Compartmental models and PET

PET is an analytical imaging technology that uses compounds labelled with
positron-emitting radionuclides as molecular tracers to image and measure bio-
chemical process in vivo. It is one of the few methods available to neuroscientists to
study biochemical processes within living brain, as methodology such as magnetic
resonance imaging is primarily only able to study effects via blood flow changes,
while PET can study changes in the biochemical systems themselves. This is of
considerable interest within research into diseases in which biochemical changes
are known to be responsible for symptomatic changes, such as in schizophrenia
and other psychiatric diseases [11]. In a clinical setting, PET is now one of the
most commonly used diagnostic procedures for cancer (both within and outside
the brain), as fluoro-deoxyglucose ([18F]-FDG, a radiotracer analogue of glucose)
can be imaged. Cancer cells tend to be very metabolically active, thus requiring
more glucose than surrounding cells, resulting in a greater uptake of [18F]-FDG,
leading to an indication of cancer location on an [18F]-FDG scan [12].
In a typical molecular assay, a positron-labelled tracer is injected intravenously

and the PET camera scans a record of positron emission as the tracer decays
[39]. With all events detected by the PET camera, the time course of the tissue
concentrations are reconstructed as three-dimension images [32]. The digital image
so captured shows the signal integrated over small volume elements (voxels). Each
voxel has a volume of the order of a few cubic millimeters. This data provides the
tissue time-activity function, which is the time course of the total concentration
of tracer at that voxel location. This tissue time-activity function is then typically
modelled using linear compartmental models.
Compartmental models are a class of models that describe systems in which

some real or abstract quantity flows between different (physical or conceptual)
compartments, each with its own characteristics. It is often of interest to infer
both parameters that describe the dynamics of the system and the number of
compartments that are required in order to adequately describe measured data
within this framework.
A compartmental system comprises a finite number of macroscopic subunits

called compartments, each of which is assumed to contain homogeneous and well-
mixed material. The compartments interact by material flowing from one compart-
ment to another. There may be flows into one or more compartments from outside
the system (inflows) and there may be flows from one or more compartments out of
the system (outflows) [27]. In this paper, linear compartmental models are consid-
ered, in particular those that are identifiable in PET studies [43]. In these models
the rate of tracer flow from a compartment is proportional to the quantity of tracer
in that compartment. In such models the flow may be parameterised by a pair of
transfer coefficients, which are termed rate constants and may take the value zero,
for each pair of compartments.
This class of models yields a set of ordinary differential equations that describe

the flow of tracer. Consider anm-compartment model. Let f(t) be the vector whose
ith element corresponds to the concentration in the ith compartment at time t. Let
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b(t) describe all flow into the system from outside. The ith element of b(t) is the
rate of inflow into the ith compartment from the environment. The dynamics of
such a model may be written as:

ḟ(t) = Af(t) + b(t),

f(0) = ξ,

where ξ is the vector of initial concentrations and ḟ denotes the time derivative of
f . The matrix A is formed from the rate constants (see [21]). The solution to this
equation is,

f(t) = eAtξ +

∫ t

0
eA(t−s)b(s) ds,

where the matrix exponential eAt =
∑∞

k=0
(At)k

k! .
The above equations admit the following qualitative interpretation. A certain

quantity of tracer b(t) arrives into the voxel from outside the brain (inflow) and
this then flows from one compartment to another depending on the rate constants
(the rates that particular chemical reactions occur). It can also leave the brain with
some rate (outflow). This is, of course, a major simplification of the true system.
PET tracers realistically bind non-specifically to the molecular bylayer or to other
targets with much lower affinity, thus proper modeling would require the addition
of many more compartments. In addition, there is an alternative interpretation of
the above equations which is more inline with this more complex idea of the true
system. This alternative interpretation is that there is some (relatively) arbitrary
decay function for the tracer in each voxel that we’d like to approximate with a
simple compartmental model with exponential decay. It is well known that this is
possible given enough compartments, although estimation errors and the ability
to only obtain small samples limit the number of compartments that are actually
identifiable.
In the plasma input compartmental model, in addition to the PET data, a sep-

arate measurement of the concentration of tracer in the plasma is available. This
measurement is generally assumed to be noise free (it can be measured with much
greater accuracy than the signal of interest). This model is used in the current
study. It should, of course, be noted that in the context of PET, the compartments
are not physical locations in the brain, but rather modeling constructs used for
approximating a much more complex system. See [21] for details of PET compart-
mental models in general.
There are many reasons that linear ODE models, of which the plasma input

model is one, are the most commonly used in PET analysis. Perhaps most im-
portantly, such systems have also been shown to characterise PET experimental
data well [33]. The amount of data available to fit the model for each voxel is rel-
atively small (20-40 time points), and even with three compartment linear ODE
models, the estimation of six parameters is non-trivial; it’s clear that attempting
to estimate the parameters of more general non-linear ODE systems robustly will
be close to impossible in this setting. Furthermore, on a voxel level, which is the
type of spatial analysis that is of interest here, the signal-to-noise ratio of the data
is not high, making any parameter estimation difficult. Finally, as the models are
estimated for every voxel in the brain (typically around 200,000 voxels per scan),
computational considerations need to be taken into account. Thus, linear ODE
models are both experimentally useful, and computationally efficient and it is dif-
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ficult to justify the additional complexity that would arise from considering more
general models. In the remainder of this paper we confine ourselves to linear ODE
models for this reason, although nonlinear ODE models have received considerable
attention in other areas in recent years — see [34] and references therein.
A plasma input model with m tissue compartments can be written as a set of

ordinary differential equations,

ĊT (t) = ACT (t) + bCP (t)

CT (t) = 1TCT (t)

CT (0) = 0,

where CT (t) is an m-vector of time-activity functions of each tissue compartment,
CP (t) is the plasma time-activity function, i.e., the input function. A is the m×m
state transition matrix, b = (K1, 0, . . . , 0)

T is an m-vector, where K1 is the rate
constant of input from the plasma into tissue. The m-vectors 1 and 0 correspond
to the m-vectors of ones and zeroes, respectively. The matrix A takes the form of a
diagonally dominant matrix with non-positive diagonal elements and non-negative
off-diagonal elements. Furthermore, A is negative semidefinite [21]. The solution
to this set of ODEs is:

CT (t) = CP (t)⊗HTP (t) =

∫ t

0
CP (t− s)HTP (s) ds (1)

HTP (t) =

m∑

i=1

φie
−θit,

where ⊗ is the convolution operator and the φi and θi parameters are functions of
the rate constants (in the sense that there is a one-to-one mapping between the set
of rate constants and the set of φi and θi parameters). The input function CP (t)
is assumed to be nearly continuously measured. The tissue time-activity function
CT (t) is measured discretely, leading to measured values of the integral of the signal
over each of n consecutive, non-overlapping time intervals ending at time points
t1, . . . , tn. The macro parameter of interest is the volume of distribution,

VD :=

∫ ∞

0
HTP (t) dt =

m∑

i=1

φi
θi
.

This corresponds to the steady state ratio of tissue concentration to plasma concen-
tration in a constant plasma concentration regime. That is, if an injection of tracers
into the plasma were made such that the plasma concentration remained constant
over the time, then the ratio of concentration in the tissues to the concentration
in the plasma after an infinite time had passed would be exactly VD.
It is assumed that the input is the same at all voxels of the reconstructed image.

This is not a particularly unrealistic assumption: the input is an empirical function
derived from online measurements of the concentrations of the radiotracer within
the blood, calculated on a per second basis. The blood carries the tracer to the brain
and the timescale on which the radiotracer is measured is very fast in comparison
with the time acquisition of PET time frames providing a temporal averaging.
However, the model for each voxel is not assumed to be the same, and different
numbers of compartments can be associated with each one. In the model fitting,
a “mass univariate” approach is taken with each voxel being analysed separately.
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This approach is common in the literature and makes the problem of dealing with a
very large number of voxels feasible — albeit at the expense of the loss of efficiency
which results from not considering the spatial structure. However, it imposes very
stringent computational requirements: more than 200,000 voxels must be analysed
(i.e. the time series analysis must be repeated separately for each of these voxels),
meaning that robustness is essential as complex model-specific characterisations
and model/algorithm tuning cannot be performed on a voxel by voxel basis.
The goal of the current work is to obtain Bayesian estimates of the macro pa-

rameter VD and also to estimate the posterior probabilities of models with different
numbers of tissue compartments. This macro parameter is highly important when
considering such quantities as receptor density and occupancy. In addition, the
number of compartments in the model typically can be identified with free tracer,
specifically bound tracer (tracer bound to the system under investigation) and non-
specifically bound tracer (tracer bound to different competing systems), indicating
the role of certain chemicals within particular brain systems. Within the proposed
framework, it is possible to estimate parameters and simultaneously to deal with
the number of compartments via model comparison, averaging or selection depend-
ing upon the inferential task of interest.

2.2 Bayesian model selection

When dealing with compartmental models some prior knowledge is almost always
available, arising from the biophysical understanding of the system at hand. As data
is generally sparse in these problems, making use of this information is appealing
— as is the possibility of simultaneous model selection and parameter estimation.
Bayesian approaches to model selection, comparison and averaging amongst

some finite collection M = {M1, . . . ,Mm} are based upon the posterior model
probability, P (Mi|D), i.e. the posterior probability that model Mi is the “cor-
rect” one given that data D is observed. Simple application of Bayes rule yields
p(Mi|D) = p(D|Mi)p(Mi)

/∑
j p(D|Mj)p(Mj). In principle, these probability dis-

tributions allow inference to be conducted by considering expected losses — the
most theoretically sound approach which could be adopted. In practice, models
choice is often performed by considering the posterior mode, i.e. finding the maxi-
mum a-posteriori estimate. We refer the reader to [41], chapter 7 for a discussion
of these issues.
In what follows we consider a prototypical parametric model M ,

p(D|M) =

∫

θ∈Θ

p(D|θ,M)p(θ|M) dθ,

where θ is the parameter vector and Θ is the parameter space of model M . The
model specifies the likelihood function p(D|θ,M) and prior beliefs are expressed
through the prior distribution p(θ|M). Given a prior distribution over the collection
of models and a prior distribution for the parameters of each model, Bayesian model
comparison proceeds via the calculation of the marginal likelihoods p(D|M). It is
well known that the prior specified over model parameters can substantially alter
the posterior model probabilities (cf. [31]) and it is especially important that
prior distributions are consistent in their description of features common to several
models.
Calculating Marginal Likelihoods In most realistic situations p(D|M) can-

not be obtained analytically. However, the posterior density, p(θ|D,M), is pro-
portional to p(D|θ,M)p(θ|M) with the normalizing constant equal to p(D|M).
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Therefore Monte Carlo methods are widely used to provide sample approxima-
tions of the posterior distribution; the marginal likelihood can be estimated using
these sample approximations.
Markov chain Monte Carlo The principle of Markov chain Monte Carlo

(MCMC) is that the sequence of dependent random variables, {X(i)}i≥1, produced
by a Markov chain with invariant distribution f provides a Monte Carlo approxi-
mation of the integral

∫
h(x)f(x) dx where h(x) is any sufficiently regular function

approximated by a series of correlated samples:

lim
n→∞

1

n

n∑

i=1

h(Xi) → Ef [h(X)]

see [1, 42, 46].
Suppose an MCMC algorithm with invariant distribution p(θ|D) ∝ p(D|θ)p(θ)

is available; it will produce a sequence of dependent samples for parameter θ,
(θ(1), . . . ,θ(T )). From the identity

∫

θ∈Θ

g(θ)
p(θ|D,M)p(D|M)

p(D|θ,M)p(θ|M)
dθ =

∫

θ∈Θ

g(θ)
p(θ,D|M)

p(θ,D|M)︸ ︷︷ ︸
=1

= 1,

where g is any probability density function whose support is contained within that
of the posterior. Dividing both sides of this equation by p(D|M) yields:

1

p(D|M)
=

∫

θ∈Θ

p(θ|D,M)
g(θ)

p(D|θ,M)p(θ|M)
dθ

and it follows that, under weak regularity conditions, a consistent extension of the
harmonic mean estimator [37] due to [13], of p(D) is

̂p(D|M) =

[
1

T

T∑

i=1

g(θ(i))

p(D|θ(i),M)p(θ(i)|M)

]−1

. (2)

where θ(i) is one of the correlated samples (θ(1), . . . ,θ(T )). This estimator obeys
a central limit theorem if the tails of g are sufficiently light. To avoid instability
arising from samples with very small likelihood, g should be chosen to have lighter
tails than the posterior distribution [8]. Note that these requirements are exactly
those that arise in importance sampling (cf. [17]) although in this setting we have
freedom to specify the target rather than the proposal density. Viewed from this
perspective it is clear that although (quite rightly) mistrusted when not imple-
mented carefully (e.g. [7] in the discussion of [40]), this type of estimator has the
potential to work as well as any importance sampling estimator (and as is detailed
below, we are able to obtain good performance in the class of problems considered
here).
Numerous other methods have been proposed for estimating the marginal like-

lihood; see [20] for a survey of these and other methods for performing model
comparison using MCMC algorithms. In some settings the additional complexity
of these approaches is undoubtedly justified; in the present context we found that
the simple approach described here could be implemented in such a way that ro-
bust results could be obtained on a timescale appropriate for the analysis of very
large data sets of the sort that are of interest in PET studies (see below).
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2.3 Information Criteria

AIC and BIC are information criteria that are widely used for model selection when
point estimates of parameters are available; their use is ubiquitous in the analysis of
PET data. Both rely on the asymptotic behavior of maximum likelihood estimator
(MLE).
The AIC was introduced by [2]. In this approach, the preferred model is that

which minimises AIC = −2ℓ̂ + 2k, with ℓ̂ denoting the maximum of the log like-
lihood and k the number of estimated parameters in the model. This encourages
a minimisation of the likelihood, but with a penalty proportional to the the ad-
ditional numbers of parameters required to do this. A small sample correction,
AIC′ = −2ℓ̂+ 2k + 2k(k − 1)/(n− k − 1) suitable for samples of size n / 50k was
proposed by [25]. This is the expansion that was used in the analysis below.
The BIC was developed by [44] based upon a large sample approximation of the

Bayes factor. Defined as BIC = −2ℓ̂+ k ln(n), an asymptotic argument concerning
Bayes factors under appropriate regularity conditions justifies the choice of the
model with the smallest value of BIC.

2.4 PET modeling and model selection

A great deal of work has been done on the analysis of compartmental models and
also of PET data; this section summarises the relationship between the current
work and the most relevant parts of this literature.
The use of AIC-based methods for compartmental models was first introduced

by [24]. Their work, and some recent use of AIC focus on low noise data (for
example [47] used AIC for model averaging for region of interest data). In our
case, i.e. the voxel-level analysis of PET data, the level of noise is much higher,
the model has a nonlinear structure and the noise observed in real experimental
conditions is not well described by a normal distribution. In such situations, we
will show that AIC does not perform well for either simulated or real data. Thus,
fully Bayesian modeling is the focus of this work.
We note that Bayesian analysis of compartmental models has been considered

extensively in other application domains with considerable success. In particular,
the Bayesian analysis of compartmental models in pharmacokinetics has received
considerable attention since the work of [49] and much work has been done on
the analysis of related models in epidemiology (e.g. [18]). However, in these areas
the questions of interest have typically been different; when model selection has
been considered in the case of pharmacokinetics the object of inference has typi-
cally been considering which covariates to include in a regression analysis whilst
in the epidemiological setting, variable dimension models arise from considering
interactions between individuals and subpopulations. In both cases the number
of compartments is typically treated as known and ascribed a particular physical
significance. This is quite different from the setting considered here.
Although PET modeling still predominantly uses methods such as NNLS and

AIC to analyse and choose models, recent work has advocated a more Bayesian
approach to the estimation of PET data. [48] introduced Bayesian analysis into
the estimation procedure to robustify the analysis of parameter estimation for a
restricted class of compartmental models (ones which can be transformed to linear
regression problems) while [3] uses a Bayesian approach to parameter estimation
via MCMC. Here we extend these ideas to model selection for PET, and also intro-
duce a method of using biological information to mathematically inform the choice
of prior distributions. In addition, we investigate whether the usual assumptions of
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normally-distributed errors are robust enough for the analysis of noisy PET data,
and find that they are not.

3. Methodology

3.1 Models

In the scenarios below, linear one-, two-, and three-compartment models are consid-
ered possible; the method could deal with other compartmental models straightfor-
wardly, but we focus on these as they are the most interesting in the application of
interest. Let t1, . . . , tn be the end points of the time frames at which the tissue con-
centrations are measured, let yj, j = 1, . . . , n be the observed data. Measurement
error is assumed to be white and additive with zero mean and variance propor-
tional to the activity divided by the length of time frames. These assumptions
arise from the physical characterisation of the PET system of interest. As the time
points are irregularly spaced, and the measurement at the midpoint of the time
frame (length of recording interval for that time point) is derived (by averaging)
from the measured radiation within that interval, the length of the interval affects
the amount of uncertainty present. This is included in the model. The reason that
the noise is assumed to be proportional to the activity observed results from the
normal approximation to the Poisson nature of the radioactive decay. Alternative
specifications would be possible and appropriate for other situations. Combining
the deterministic evolution model described by Equation (1) with this stochastic
measurement model yields:

CT (tj ;φ1:m, θ1:m) =

m∑

i=1

φi

∫ tj

0
CP (s)e

−θi(tj−s) ds

yj = CT (tj ;φ1:m, θ1:m) +

√
CT (tj ;φ1:m, θ1:m)

tj − tj−1
εj ,

where m = 1, 2, or 3 is the number of tissue compartments, t0 = 0, and εjs are
identically independently distributed random variables with mean zero. It is usually
assumed that εjs have a normal distribution. It is demonstrated below that there is
evidence that a t distribution better fits the observed data. We consider two error
structures:

εj ∼ N (0, σ2) Normally-distributed errors

εj ∼ T (0, τ, ν) t-distributed errors,

where N (0, σ2) is the normal distribution with mean zero and variance σ2, and
T (0, τ, ν) is the Student t distribution with location zero, scale τ , and ν degrees of
freedom.
It should be emphasized that the ODE is entirely deterministic, but is measured

with independent random errors. PET data is generated through independent Pois-
son decay of radioisotopes and thus should not display any intrinsic temporal corre-
lation. However, it is entirely possible that the tomographic reconstruction process
of the data could introduce dependence (although it is not obvious exactly how
this would occur as temporal frames are reconstructed independently, but other
corrections such as scatter correction could possibly induce dependence). However,
a Durbin-Watson test applied to PET data, corrected for multiple comparisons,
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did not show any evidence of dependence in general [5].

3.2 NLS, AIC, and BIC implementations

The AIC and BIC approaches to model comparison are both based upon maximum
likelihood estimates (MLE). With normally-distributed errors, the log likelihood
with respect to the φ1:m, θ1:m and σ2 parameters is,

ℓ =
n

2
ln
( 1

2πσ2

)
+
1

2

n∑

j=1

ln
( tj − tj−1

CT (tj ;φ1:m, θ1:m)

)
− 1

2σ2

n∑

j=1

tj − tj−1

CT (tj ;φ1:m, θ1:m)
(yj−CT (tj ;φ1:m, θ1:m))2,

and given values for the φ and θ parameters, ℓ is maximised by

σ̂2 =

n∑

j=1

tj − tj−1

CT (tj; φ̂1:m, θ̂1:m)
(yj − CT (tj; φ̂1:m, θ̂1:m))2, (3)

where CT (tj) is evaluated at the estimates of φ and θ. The nonlinear least squares
(NLS) method for approximation of the MLE is widely used in PET models; par-
ticularly in the neuroscience literature. Throughout the current work, NLS, AIC,
and BIC are implemented such that, first estimates of φ1:m and θ1:m are found by
minimising

n∑

j=1

tj − tj−1

CT (tj; φ̂1:m, θ̂1:m)
(yj − CT (tj; φ̂1:m, θ̂1:m))2,

Then σ2 is obtained, conditionally, from equation (3). The maximum of the log
likelihood, which is required by AIC and BIC, is approximated using the likelihood
evaluated at the NLS estimates for φ’s and θ’s, together with this estimate of
σ2. This approximation of the MLE is widely used in the literature [47] because
it’s rather easy to compute, but it can exhibit somewhat unstable behavior at high
noise levels, where in some cases parameters are estimated well outside biologically-
plausible ranges. See, for example, the simulation study of [38] which shows that
at high noise levels, unless constraints are placed on the parameter ranges, the
empirical variance of the parameters becomes extremely large due to the noise
levels making the parameters almost unidentifiable.
When implementing the NLS algorithm, the φ parameters are constrained to lie

within the interval [10−5, 1] and the θ parameters within the interval [10−4, 1] in
order to ensure that the parameters are physiologically meaningful [9].

3.3 Bayesian modeling for PET Compartmental Models

We consider Bayesian models for the observed data signal under the hypotheses
that residual noise is well modelled by (a) additive normal errors and (b) additive
t-distributed errors.
It is necessary to specify prior distributions for the φ and θ parameters as well

as the parameters of the noise distributions. Two approaches are employed; this
enables the assessment of the sensitivity of our results to prior specification. It also
allows us to verify that the use of vague priors does not have a strong influence
on the result, indeed the only noticeable effect is an increase in the attendant



January 10, 2013 Journal of Applied Statistics paper-cJAS2e

10

uncertainty, relative to that observed when more informative priors are considered,
as would be anticipated.

3.3.1 Vague Priors

We consider vague priors in which scale parameters follow an approximation to
the Jeffrey’s prior and rate constants are assumed to follow a uniform distribution
on the same intervals as are considered feasible in the NLS implementation. We
also consider prior distributions informed by biological knowledge as discussed in
the next section.
With normally-distributed errors, the prior for precision parameter λ = 1

σ2 is a
gamma distribution with both parameters equal 10−3 – a proper approximation to
the improper Jeffrey’s prior. With t-distributed errors, the same prior is used for
the scale parameter, τ , as for λ in the normal model. The prior for 1/ν is uniform
over interval [0, 0.5), allowing the likelihood to vary from having a very heavy tail
to being arbitrarily close to normality [16]. Let y = (y1, . . . , yn)

T , and recall that

CT (tj;φ1:m, θ1:m) =

m∑

i=1

φi

∫ tj

0
CP (s)e

−θi(tj−s) ds.

Using the above priors, the posterior distribution with normally-distributed errors
is

p(φ1:m, θ1:m, λ|y) ∝
n∏

j=1

√
λ exp

{
−λ
2

[
tj − tj−1

CT (tj ;φ1:m, θ1:m)

]
(yj − CT (tj ;φ1:m, θ1:m))2

}
× λα−1e−βλ

×
m∏

i=1

I[φa
i ,φ

b
i ]
(φi)I[θa

i ,θ
b
i ]
(θi), (4)

where α = β = 10−3, the parameters of the prior distribution of λ. And φai and
φbi are the lower and upper bounds of the truncation interval of parameter φi and
corresponding notation is used for θi. These intervals are the same as those used
to constrain the NLS estimates for these parameters.
With t-distributed errors, yj has a t distribution with location CT (tj), scale

tj−tj−1

CT (tj)
τ , and degrees of freedom ν. The posterior distribution is,

p(φ1:m, θ1:m, τ, ν|y)

∝
n∏

j=1

{
Γ(ν+1

2 )

Γ(ν2 )

( tj − tj−1

CT (tj ;φ1:m, θ1:m)

τ

πν

) 1

2

(
1 +

tj − tj−1

CT (tj ;φ1:m, θ1:m)

τ

ν
(yj − CT (tj;φ1:m, θ1:m))2

)−
ν+1

2

}

× τα−1e−βτ × 1

ν2
× I[a,b]

(1
ν

) m∏

i=1

I[φa
i ,φ

b
i ]
(φi)I[θa

i ,θ
b
i ]
(θi) (5)

where α = β = 10−3, the parameters of the prior distribution of τ ; a = 0 and
b = 0.5.

3.3.2 Biologically informed priors

The primary prior information available when dealing with compartmental mod-
els typically concerns the macro parameter(s) of interest: VD in the situations
considered here. However, it is more convenient to work with models expressed
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in terms of the collection {θi, φi}mi=1. Here, a method for constructing informative
priors in terms of these parameters is presented.

[4] provided some useful results about compartmental models in general. Let
γ0j denote the rate constant of the outflow from the jth compartment into the
environment. Without loss of generality, assume that the θi are ordered: θ1 ≤ · · · ≤
θm. Then,

(1) 0 ≤ θi ≤ 2maxj |Ajj | for all i.
(2) minj γ0j ≤ θ1 ≤ maxj γ0j .
(3) when there is only one outflow into the environment, say the rate constant

of this outflow is k2, as in the plasma input model, then 0 ≤ θ1 ≤ k2.

In addition,
∑m

i=1 φi = K1, where K1 is the rate constant of input from the plasma
into the tissues [21]. Therefore φi < K1 for i = 1, . . . ,m. Given this information,
more informative prior distributions can be constructed. For simplicity, we restrict
discussion to imposing upper and lower bounds on the possible values of the pa-
rameters. As we subsequently find that inference is not overly sensitive to the prior
specification we do not pursue more complicated approaches.
To demonstrate the idea, an informative prior distributions for a three tissue

compartments model is constructed. First note that the transition matrix A is,

A =



−k2 − k3 − k5 k4 k6

k3 −k4 0
k5 0 −k6


 . (6)

which corresponds to inflow and outflow rates of compartments. It is believed that
all the rate constants take values in the range [5 × 10−4, 10−2]. Without loss of
generality, we impose the identifiability constraint θ1 ≤ θ2 ≤ θ3, then,

0 < θ1 ≤ k2 ≤ 10−2 (7)

θ1 ≤ θ2 ≤ θ3 ≤ max{2(k2 + k3 + k5), 2k4, 2k6} ≤ 6× 10−2 (8)

Under the imposed ordering, as θ1 is the smallest exponent, the term φ1e
−θ1t

decays more slowly than any other term in the expansion. Consequently, φ1/θ1 is
likely to make a relatively large contribution to VD =

∑m
i=1 φi/θi. In fact, as A has

only negative real eigenvalues, θ1 is the spectral radius of A. It is not well known
how large the ratio (φ1/θ1)/VD will be. However, it is easy to conduct a numerical
study here, given the small number of parameters. It is found that among all
possible combination of ks, φ1/θ1 ≥ 0.5VD. If the combinations of k’s are restricted
to those without excessively large differences between them, i.e. cases in which, say,
k5 ≫ k6 are not considered, then φ1/θ1 ≥ 0.7VD. The reason for not considering
these cases is that such irreversible (trapped) models yield infinite VD estimates
and it is generally known in advance that the tracer employed will exhibit reversible
dynamics. The same numerical study also found that φ1 > 0.5VD for the majority
of combinations of micro parameters. Since we also need to constrain φ1 < K1 and
φ1/θ1 < VD, it is reasonable to suggest that φ1 ∼ 0.6K1 and φ1/θ1 ∼ 0.75VD .
In summary, given the belief that the rate constants lie within [5 × 10−4, 10−2],

the macro parameters K1 ∼ 5 × 10−3ml s−1 cm−3, and VD ∼ 20, the following
semi-quantitative statements are consistent with our understanding of the system:

(1) φ1 ∼ 0.6K1 = 3× 10−3.
(2) φ1/θ1 ∼ 0.75VD = 15.
(3) φi < K1 − φ1 for all i > 1.
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(4) φi/θi < VD − φ1/θ1 for all i > 1.

Defining the truncated normal density,

T N [a,b]

(
x;µ, σ2

)
:=

N (x;µ, σ2)I[a,b](x)

Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) ,

where I[a,b] denotes the indicator function on [a, b] and Φ is the and standard
normal distribution function, the following prior distributions are used to encode
this information:

φ1 ∼ T N [10−5,10−2]

(
·; 3 × 10−3, 10−3

)
θ1|φ1 ∼ T N [2×10−4,10−2]

(
·;φ1/15, 10−2

)

φ2 ∼ T N [10−5,10−2]

(
·; 10−3, 10−3

)
θ2|φ2, θ1 ∼ T N [θ1,6×10−2]

(
·;φ2/4, 10−2

)

φ3 ∼ T N [10−5,10−2]

(
·; 10−3, 10−3

)
θ1|φ3, θ2 ∼ T N [θ2,6×10−2]

(
·;φ3/1, 10−2

)
.

For one- and two-compartments models the appropriate subset of these prior
distributions are used, ensuring that common priors are used for the shared pa-
rameters of nested models.

3.3.3 MCMC algorithms

The MCMC algorithm used to sample the posterior distribution is a random-
walk-Metropolis algorithm. Let p denote the number of parameters. Let ψ =
(ψ1, . . . , ψp) be the parameter vectors, which will be (φ1, θ1, . . . , φm, θm, λ)
for normally-distributed or (φ1, θ1, . . . , φm, θm, τ, ν) for t-distributed errors. Let
f(ψ) = p(ψ|y) be the associated posterior distribution. When vague priors are
used, f(ψ) is as described in Equations (4) and (5) for normal and t-distributed
errors, respectively. The corresponding posterior distributions for informative pri-
ors are similar.

Algorithmically, the procedure is simply:

(a) Initialize ψ with ψ(0) = ψ0, set t = 0. ψ0 can be any value within the
support of the priors.

(b) Generate U t according to p-dimensional uniform random distribution
on

∏p
i=1[−si, si]. Where si is the step size for ψi, which will be specified

later. Set ηt = ψ
(t) +U t.

(c) Calculate rt = f(ηt)/f(ψ
(t)). Generate ut according to uniform distri-

bution on [0, 1]. If ut ≤ rt, Set ψ
(t+1) = ηt, otherwise set ψ

(t+1) = ψ(t).
(d) Increment t. If t < N for some preset positive integer N , go to step

(b), otherwise stop.

The step sizes were chosen via pilot simulations such that the acceptance rate
was between 20% and 30%.
The marginal likelihood is estimated with equation (2) where g is chosen to be

the multivariate normal distribution, whose mean and diagonal covariance matrix
are calculated using the posterior samples, truncated to the posterior support. It
is immediately clear that the posterior distributions having only one (normally-
distributed errors) or two (t-distributed errors) non-compactly supported parame-
ters and the tails of these parameters being essentially exponential, that the normal
tail of this function will be asymptotically dominated by the posterior leading to
bounded “importance weights” which cannot therefore lead to infinite variance
[17].
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A small simulation study was used to verify that the observed variance was small
enough to be acceptable. For the model with normally-distributed errors, we ap-
plied the algorithm for a three-compartmental model to a simulated data set with
realistic noise level. The simulation was repeated 1,000 times, each with 10,000
iterations after a proper convergence burn-in period. The empirical Monte Carlo
variance of the logarithm of the marginal likelihood estimates was 0.195 (see below
for an indication of the typical scale). The same experiment was carried out for
the model with t-distributed error and for several typical real data sets. Similar
results were obtained. Empirically the results demonstrate that the marginal like-
lihood estimator indeed has small variance, and that it is small enough to permit
model comparison based upon these estimates. We also perturbed the g function
in equation (2) by multiplying the covariance matrix by values ranging from 0.8 to
1.2. The change of estimates was uniformly less than 1% for the data and models
used in the application demonstrating insensitivity to this particular quantity.
Work is ongoing to develop alternative methods which allow the use of modern

parallel hardware architecture to accelerate the estimation procedure. The pilot
study [50] demonstrates very close agreement between the algorithm detailed above
and a novel approach based around path sampling [14] and Sequential Monte Carlo
[10] in the manner of [29].

4. Numerical Results

We begin with a simulation study to validate the proposed method before moving
on to consider real data from two [11C]diprenorphine experiments.

4.1 One-dimension simulation

Data was simulated from the three-compartment model, with parameters K1 =
6 × 10−3, k2 = 3 × 10−3, k3 = 5.5 × 10−3, k4 = 1.5 × 10−3, k5 = 10−3 and
k6 = 3 × 10−3. All parameters have the unit s−1 except K1 which has units ml
s−1 cm−3 [26]. The macro parameter VD was thus 10. A real measured plasma
input function, taken from [28], is used (see Figure 1). The simulated data has
32 time frames with lengths corresponding to the integration periods used in real
experiments (27.5, 32.5, 2 × 10, 20, 6 × 30, 75, 11 × 120, 210, 5 × 300, 450, and
2 × 600, all in seconds), see Figure 2 for the synthetic noise free data. Noise is
added to the synthetic data such that the noise is normally-distributed with mean
zero, and variance proportional to the time activities divided by the length of time
frames. The noise is scaled such that the highest variance in the sequence is equal
to a “noise level” variable (with the others scaled in proportion). This noise level
ranges from 0.01 to 5.12, from lower than typical region of interest (ROI) analysis
(in which the data is averaged over a biologically meaningful region in order to
improve signal to noise ratio) to higher than the noise associated with voxel-level
analysis [38]. For each noise level, 2,000 time series were simulated. Normally-
distributed errors were assumed (correctly, in this simulation study). For each of
these time series analysis was carried out for each of the three possible models via
likelihood-based and Bayesian methods as detailed previously.
The NLS procedures use the direct algorithm [30] to find a local minimum, and

then uses this minimum to initialise a Nelder-Mead simplex algorithm [36]. The
programs used for both likelihood-based and Bayesian modeling are implemented
in C++ [45] and are available from the first author on request.
Parameter Estimation Table 1 summarises the MSE of estimates of VD for
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Figure 2. Noise free simulated data

Table 1. MSE of VD , three-compartment model

Noise level

Method 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12

NLS 0.00050.001 0.004 0.017 0.032 0.052 0.103 0.221 0.572 1.191
Bayesian vague 0.00050.00090.002 0.004 0.008 0.015 0.031 0.053 0.105 0.207
Bayesian informative 0.00040.00080.002 0.003 0.007 0.013 0.027 0.052 0.104 0.195

the three-compartment model, obtained by NLS, and also by Bayesian estimation
with vague and informative priors. As shown in the table, the NLS estimates are
good at low noise level. But at the noise levels typically observed in voxel-level
analyses, the Bayesian estimates have significantly smaller MSE. The estimates
obtained using informative priors improve at low noise level and are comparable
to the estimates with uniform priors at high noise level. In general the Bayesian
estimates are more stable than the NLS estimates, which is known to have positive
bias that increases with noise level [38].
Model selection Tables 2 and 3 summarise the proportion of times each order

of model is selected by the information criteria techniques and by choosing the a
posteriori most probable model with a uniform prior over model order, respectively.
Table 4 summarises the MSE of estimates using selected model under these model
selection strategy. As shown in the table, both the frequency with which the true
model is chosen and the MSE of estimated for selected models are improved by
using Bayesian model selection. Model selection is improved, particularly at higher
noise levels, by the use of informative priors. However, in all cases, the true model
is hard to identify due to the limited temporal data, even at low noise levels.
Discussion Using different priors does not alter the results substantially: there is

sufficient information in the data to overwhelm the quite large differences between
the two sets of priors that were considered. Model selection is not overly sensi-
tive to the choice of priors (although slightly better results are obtained by using
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Table 2. Frequencies of model selected by AIC and BIC (%)

Noise level

Model 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12

AIC 1 0 0.1 0.6 1.0 1.8 16.3 48.8 78.3 91.6 98.5
2 91.6 94.0 95.0 96.3 96.6 83.1 50.7 21.5 8.3 2.5
3 8.4 5.9 4.4 2.7 1.6 0.6 0.5 0.2 0.1 0

BIC 1 0 0.1 0.8 1.3 3.5 27.1 64.9 87.8 95.7 98.6
2 94.6 96.2 96.1 96.8 95.5 72.7 35.0 12.2 4.3 1.4
3 5.4 3.7 3.1 1.9 1.0 0.2 0.1 0 0 0

Table 3. Frequencies of model selected by Bayes factors (with vague and informative priors) (%)

Noise level

Model 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12

Vague 1 0 0 0 0 6.3 7.0 24.3 30.7 41.6 54.8
Priors 2 12.5 20.1 35.2 49.4 55.3 67.5 62.6 59.1 52.2 43.0

3 87.5 79.9 64.8 50.6 38.4 25.5 13.1 10.2 6.2 2.2

Informative 1 0 0 0 0 0 1.0 6.2 15.2 27.8 37.1
Priors 2 10.6 17.5 33.3 45.8 58.8 70.2 73.0 67.3 57.3 53.0

3 89.4 82.5 66.7 54.2 41.2 28.8 20.8 17.5 14.9 9.9

Table 4. MSE of VD , selected model

Noise level

Method 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12

AIC 0.00050.001 0.003 0.007 0.012 0.024 0.063 0.132 0.308 0.719
BIC 0.00050.001 0.002 0.006 0.011 0.018 0.059 0.111 0.242 0.658
BF Vague 0.006 0.006 0.007 0.009 0.022 0.025 0.031 0.074 0.085 0.247
BF Informative 0.001 0.001 0.002 0.004 0.007 0.015 0.028 0.058 0.111 0.221

informative priors, with the additional prior information allowing the detection
of a little more structure amongst the noise). Bayesian modeling is better overall
than using AIC or BIC combined with NLS, for both parameter estimation and
model selection in that it produces estimates with a smaller MSE for most noise
levels and recovers the true model more often than the alternative approaches. For
model selection with very noisy data, the AIC and BIC methods can hardly detect
the existence of a second compartment and at no noise level can they find con-
siderable evidence of the existence of the third compartment (which exists in the
true model). The Bayesian approach to model selection shows a large improvement
over AIC and BIC, but still cannot recover the true model reliably. It is our view
that this provides a strong motivation for treating model selection very cautiously
when dealing with models of this sort and that the Bayesian approach developed
has two substantial advantages: it provides a natural quantification of uncertainty
and, perhaps more significantly, it lends itself to a model averaging approach which
is perhaps more appropriate when no one model is overwhelmingly preferred (espe-
cially in situations such as PET imaging in which the models are clearly not exact
descriptions of the data-generating process).
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4.2 Measured [11C]diprenorphine data

Having verified that the proposed method is effective when applied to data sim-
ulated from the model, we turn our attention to real data sets which have been
considered in the literature using this model.
Data from the a PET study using [11C]diprenorphine are used to examine the

methods presented. The overall aim of the study was to quantify opioid receptor
concentration in the brain of normal subjects allowing a baseline to be found for
subsequent studies on diseases such as epilepsy. Diseases such as epilepsy tend to
involve changes in brain receptor concentrations or occupancy levels either due
to physical lesions within the brain or other chemically relevant differences from
normal controls. The data have been previously analysed in [38] and in [28] but
in both these previous analyses, parameter estimation rather than model com-
parison was the focus. Two dynamic scans from a measured [11C]diprenorphine
study of normal subjects, for which an arterial input function was available, were
analysed. [11C]diprenorphine is a tracer that binds to the opioid (pain) receptor
system in the brain. The subjects underwent 95-min dynamic [11C]diprenorphine
PET baseline scans on the same camera. The subjects were injected 185 MBq of
[11C]diprenorphine. PET scans were acquired in 3D mode on a Siemens/CTI ECAT
EXACT3D PET camera, with a spatial resolution after image reconstruction of ap-
proximately 5mm. Data were reconstructed using the reprojection algorithm [32]
with ramp and Colsher filters cutoff at the Nyquist frequency. Reconstructed voxel
size were 2.096mm × 2.096mm × 2.43mm. Acquisition was performed in listmode
(event-by-event) and scans were rebinned into 32 time frames of increasing du-
ration. Frame-by-frame movement correction was performed on the PET images.
Overall this resulted in images of size 128 × 128 × 95 voxels, which when masked
to include only brain regions, resulted, for the two data sets analysed below, in
233,054 and 250,570 separate time series respectively to be analysed. Thus this
represents a massive repeated application of the proposed framework for Bayesian
analysis.
Nonnegative least squares (NNLS) estimates of VD [9] are available from a previ-

ous study for both data sets and are used as a baseline for comparison (NNLS can
be used due to the non-negative nature of the underlying rate constants). The AIC
and BIC strategies select the model with smallest AIC or BIC, respectively, while
the Bayesian strategy selects the model with highest marginal likelihood. The NLS
procedures are exactly the same as in the simulation study. One-, two- and three-
tissue compartment models are fitted. The same models (with normally-distributed
errors) were also subjected to Bayesian analysis. However, the results are not rea-
sonable. Figure 3 shows the time series associated with five typical voxels and their
standardised residuals (which in the case of a normal error model should have a
standard normal distribution). The NNLS estimates for these five voxels are all
around 25 or above. But the Bayesian estimates with normally-distributed errors
are about 15. In fact, for most voxels, the Bayesian estimates are about 50% smaller
than the NNLS estimates. This can be explained by noting that for the first three
data observations, the input function is nearly zero. Hence whatever values of pa-
rameters are proposed, the fitted value of CT (t) will be near zero for these three
points (no input, no activity). Whenever any of the first three observation departs
significantly from zero, which for the noisy data at voxel level analysis happens in
almost all real data, the likelihood will be very low. The normal distribution has a
very thin tail and therefore the first few data points have an overwhelming effect
on the likelihood and hence the posterior distribution. In practical studies, the
influence of these points is truncated at a somewhat arbitrary value (a maximum
weight of 1,000 was used within the NLS component of our own comparison) in
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order to mitigate against this effect: this ad hoc procedure is essential in order to
obtain reasonable results with this model.
As shown in the figure, all of the five typical voxels have large residuals at the

start of the time-activity course. With normally-distributed errors, these points
will have very small probability. Testing the residuals against normal distribution
with Kolmogorov-Smirnov test (which is overly conservative as the parameters of
the normal distribution have been estimated) shows that for the great majority
of the voxels across the whole space, the null hypothesis (that residuals are from
a normal distribution) should be rejected at a 5% level. A possible solution to
this problem is proposed here. The t distribution is used in place of the normal
distribution to model the errors. The t distribution can have a heavy tail and is
more robust to outliers than the normal distribution. As shown in figure 3, the
data residuals demonstrate rather systematic and substantial departures from the
normal distributions.
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Figure 3. Measured CT (t) for five typical voxels and their standardized residuals, fitted with NLS for
three-compartments models

For these reasons, we propose using a more heavily-tailed t distribution to model
error structures for Bayesian inference. It is natural to use Bayes factor to compare
the normal and t-distributed error models. For the five typical data sets in Figure 3,
we fitted the three compartment model with both noise distributions and computed
the marginal likelihood. For each data set and model, 1,000 repetitions were carried
out to quantify the Monte Carlo error. Table 5 compares the logarithm of the
marginal likelihood for these data. It is seen that the t-distributed error model is
far more plausible from a Bayesian perspective. In addition, this model indeed gave
reasonable estimates for the parameter of interest VD

Table 5. Bayesian model comparison between Normal and t-distributed errors

Model Logarithm of marginal likelihood (standard derivation)

Normal -145 (±1.2) -147 (±1.1) -138 (±1.3) -141 (±0.9) -132 (±1.1)
t -75 (±0.6) -77 (±0.8) -69 (±0.7) -70 (±0.4) -64 (±0.9)

Diagnostics for the Convergence of the Markov Chain Although we we
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recognise that simple diagnostics do not guarantee that an MCMC algorithm is
sufficiently fast mixing, they can at least show evidence that a chain has not
converged. It is self-evident that the absence of evidence of non-convergence is
a minimal requirement for the output of an MCMC algorithm to be trusted.
For each time series, 100,000 iterations were used for burn-in and a further

100,000 iterations are used to make the subsequent inference. The estimates of
VD and the marginal likelihood p(D) are the primary objects of inference. In order
to assess the convergence, the MCMC chain was initialised with dispersed starting
values. Figure 6 shows the estimates of VD from the burn-in iterations of a typical
voxel when starting the chain from different values. As shown in the plot, 40,000
iterations is enough for the chain to mix well and get a good estimate for VD,
the parameter of interest, as mentioned above, 100,000 samples were used for a
conservative burn-in period. Similar plots were produced for other parameters and
they all showed that chains initialized from different areas of the parameter space
produce very similar estimates. It is, of course, not feasible to manually inspect
such traces for all voxels, however 200 voxels with a range of values of VDs were
examined in this way. It was found that the algorithm mixed well for voxels from
different regions of the brain.
A more quantitative technique was employed to check for evidence of poor mixing

throughout the (1.5 million) chains used in the real-data examples. Following [15],
the variance of the estimate of VD obtained from the final 10,000 samples of the
chain was divided by that of the estimate of VD obtained by all post-burn-in samples
(100,000); a value of between 0.9 and 1.1 is recommended as an indication that the
chain has reached stationarity (for a single simulation run) by [15]. In our case, we
consider a summary of the 1.5 million chains used to describe the large number of
voxels in the brain under several modeling regimes and we found that this ratio
was between 0.9 and 1.1 for 91.2% of all voxels. Figure 4 shows that for both data
sets, the ratio is universally within the 0.7 to 1.2 interval. The actual variance of
estimate of VD from Bayesian estimation for the two data sets is shown in Figure 5.
In addition, much longer chains were run to examine the behavior of the algo-

rithm. Table 6 shows the estimates of a typical voxel when using different length
of the MCMC chain. As seen in the table, with long chains, the estimates does not
change substantially suggesting that the algorithm has converged to stationarity
for even the shortest chains (of course, no such diagnostic provides proof that this
is the case, but these are the type of diagnostics most routinely used).

Ratio
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(0.9,1]
(1,1.1]
(1.1,1.2]
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Figure 4. Convergence Diagnostic: ratio of variance of final 10,000 samples to that of full 100,000 samples
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Figure 5. Variance of Bayesian estimate of VD



January 10, 2013 Journal of Applied Statistics paper-cJAS2e

19

Iterations

P
os

te
rio

r 
m

ea
n 

of
 V

D
10

15
20

25
30

2e+04 4e+04 6e+04 8e+04 1e+05
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Table 6. Estimates from a long chain for a typical voxel

Chain lengths

Parameter 104 5× 104 105 5× 105 106 2× 106

VD 25.71 25.67 25.64 25.75 25.82 25.73
p(D)/10−31 3.22 3.45 3.36 3.23 3.31 3.39

Estimation Figure 7 shows the estimates of VD for a three-compartments model,
using Bayesian posterior means with informative priors and NLS, together with the
NNLS estimates obtained by [28] for the data. Overall the percentage difference
between NNLS and NLS ((NNLS - NLS) / NLS) is about 3%. This difference is
fairly uniform overall the range of VD, though there are large percentage differ-
ence for voxels with very small values of VD. This is due to the fact that different
bounds/priors are applied to the space of the φ and θ parameters and different esti-
mates are obtained when the value of parameters are near the boundaries. However,
these voxels are less of interest as they correspond to regions with little or no ac-
tivity and hence little receptor density. The Bayesian estimates are roughly 5%
smaller than the NNLS estimates. Previous studies showed that NNLS has about
5% positive bias with noise levels typical of a voxel analysis [38]. There are similar
large differences for voxels with small VD as with the NLS estimates. Overall, if
we take the results of previous simulation study of NNLS, then the Bayesian esti-
mates would appear to offer better estimation than NNLS estimates. In addition,
a principled way of introducing the prior knowledge concerning the rate constants
has been used and a more appropriate noise model has been employed aiding inter-
pretation of the results. Similar results were obtained for both [11C]diprenorphine
scans indicating somewhat reproducible results (Figure 8).
As implemented on a 3.07GHz Xeon processor, the average (single core) CPU

time per voxel is 0.15 seconds for the MCMC algorithm. Using a fairly standard
4-core CPU system, this equates to approximately two hours for a complete PET
scan. While significantly longer than the equivalent NNLS implementation (approx-
imately 5 minutes on a similar system), we do not believe that this is prohibitively
slow, even for routine analysis, particularly given the additional information and
accuracy achieved. Furthermore, the length of chain employed in this study has
been rather conservative and a significant increase in speed could be achieved with
very little reduction in estimation accuracy.
Model selection Figures 7 and 8 also show the model order estimates obtained

by using AIC, BIC, and Bayes factors for the data. Each row in the figures gives
three two dimensional cross sections of the transverse, coronal and sagittal views
of the brain. All methods give similar (although not identical) results for model
estimates but somewhat different results for the model selection. Previous studies
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on [11C]diprenorphine have shown that finding a particular single compartmental
structure for the entire brain is unrealistic [22]. However, the model selection results
of AIC and BIC do not exhibit any obvious spatial structure. For both, the two-
compartment model is most widely favored. When using Bayesian model selection,
the one-compartment model dominates in low activity areas. These areas are of
less interest, but the findings are perhaps interesting. Identifying the parameters of
a second or third compartment in areas with barely any activity is rather difficult.
In the extreme case, for a voxel with no activity but noisy signals, the model can
have arbitrary compartments, each of them having near zero concentration. Using
Bayesian model comparison, the one-compartment model is chosen which at least
favors a parsimonious representation; it could be argued that a null model should
be added to the class of models under consideration to account for this case.
Within the areas of greatest interest in which a real neurological signal is ex-

pected, the two-compartment model is favored most often. However, there are
more three-compartments model selected in high VD areas. Overall the image of
model order for the Bayesian analysis shows rather more spatial structure than the
AIC and BIC cases although none has been imposed. It is biologically reasonable
to believe that there are similar compartmental structures for voxels within the
same area and different compartmental structures for voxels from different regions.
Although we don’t know what the true model is, or indeed believe that there is
a true compartmental model in this setting, the Bayesian model selection, which
reveals spatial structure, is more convincing than the other two. Indeed methods
that do not require the specification of a single compartmental structure for the
whole brain are well known to be preferred when modeling [11C]diprenorphine [22].
The different model structures can also be quantified and uncertainty attached to
the estimates of the model order. Also shown in Figures 7 and 8 are the posterior
model probabilities of the chosen model. For the majority of the voxels, the chosen
model has a posterior probability p(M |D) ≥ 0.5. For low VD regions, the posterior
probability is much higher indicating that there is relatively high confidence that
one compartment is adequate to explain what is observed in these regions but that
there is a lack of strong evidence to support a particular model configuration in
the case of more active regions.
Overall, the Bayesian model selection framework provides comparable parameter

estimation performance with other methods such as those in [38] and [28], empiri-
cally alleviating the biases associated with NNLS, but in addition yields evidence
as to the posterior probability of the chosen models. This gives valuable additional
information when analysing subsequent normal or patient data. Regions where
there is considerable uncertainty will require larger deviations in patient popula-
tions to establish differences, thus helping inform study designs in applications with
tracers such as [11C]diprenorphine. In addition, Bayesian model averaging can be
performed trivially using the output from the MCMC analysis.

5. Conclusions

Throughout this work, a framework using Bayesian statistics to perform parameter
estimation, model comparison and model selection for PET compartmental models
is illustrated. It is shown that the Bayesian estimates compare favorably with
other model fitting methods. Bayesian model selection improves the MSE in the
simulation case within the regime of interest. For real measured data, the Bayesian
model selection gives more sensible results and allows us to directly incorporate
knowledge of the compartmental system via the prior distribution.
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The purpose of this paper is not to advocate a particular computational approach
to Bayesian model selection but to show the potential gains associated with adopt-
ing a Bayesian approach to the problem in the context of PET studies in particular.
It is, of course, possible to employ other computational algorithms to perform pa-
rameter estimation and model selection jointly within a simulation run, employing
RJMCMC [19], for example. In more complex problems these approaches may be
more appropriate; the simple approach adopted here was adequate for the studies
that we have encountered thus far and we would anticipate will be so for other
PET compartmental studies of this type. The theoretical concerns that have been
raised about the method of [13] are not a consideration in the present context as
it is easy to control the relative tail behavior of the target and the “importance
density” thereby ensuring that this quantity is bounded and does not lead to in-
finite variance. Although much recent work has focused on samplers that explore
all models simultaneously, it is not clear that such a strategy is always preferable.
Indeed, to quote from [23]:

“. . . there is no one answer, and in some instances trans-dimensional moves will help
samplers, whereas in others they will be unnecessary.”

Furthermore, preliminary work investigating more sophisticated algorithms for the
calculation of model evidence [50] has shown very close agreement between a novel
Sequential Monte Carlo algorithm based upon path-sampling [14] and the sim-
ple approach developed here (although greater computational efficiency can be
obtained with more sophisticated machinery). Ongoing work is investigating the
performance improvements that can be obtained by such methods.
We have demonstrated that the most widely used model does not fit real PET

data well and proposed a simple extension using a t-distributed noise model. This
allows for the direct estimation of models even when moderate outliers are present
in the data. This is very often the case with real data, for example, the delay of the
input into the system is often not constant for all locations. In addition, calculating
uncertainty estimates for both models and estimates are possible, something which
it is inherently difficult (if not impossible) to achieve with methods based around
NNLS and other point estimation techniques. This provides considerable additional
information when comparing scans, and will be of particular interest when com-
paring normal controls verses patient groups where lesions or other pathological
problems may introduce considerable differences in the uncertainty of the measures
for different scans.
It would be interesting to develop methods to exploit spatial homogeneity within

the brain to improve performance and produce more parsimonious inference. Fur-
ther investigation into the modeling problem may also be warranted as the above
demonstrate that the assumption of normally-distributed errors is not consistent
with real data and with a heavier-tailed noise distribution it is not possible to
obtain strong evidence in support of any one model using the type of data which
is typically available. With the present modeling approach, macro parameters and
other such quantities of interest could be more robustly estimated by Bayesian
model averaging than by any approach based upon model selection (see, for exam-
ple, [6], Chapter 6) and that is the strategy that we would recommend.
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Figure 7. Estimates for VD and model orders the first data set, three compartments, [28, data]. Left: estimates for VD . Right: model orders
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