65 research outputs found

    The effect of variable labels on deep learning models trained to predict breast density

    Full text link
    Purpose: High breast density is associated with reduced efficacy of mammographic screening and increased risk of developing breast cancer. Accurate and reliable automated density estimates can be used for direct risk prediction and passing density related information to further predictive models. Expert reader assessments of density show a strong relationship to cancer risk but also inter-reader variation. The effect of label variability on model performance is important when considering how to utilise automated methods for both research and clinical purposes. Methods: We utilise subsets of images with density labels to train a deep transfer learning model which is used to assess how label variability affects the mapping from representation to prediction. We then create two end-to-end deep learning models which allow us to investigate the effect of label variability on the model representation formed. Results: We show that the trained mappings from representations to labels are altered considerably by the variability of reader scores. Training on labels with distribution variation removed causes the Spearman rank correlation coefficients to rise from 0.751±0.0020.751\pm0.002 to either 0.815±0.0060.815\pm0.006 when averaging across readers or 0.844±0.0020.844\pm0.002 when averaging across images. However, when we train different models to investigate the representation effect we see little difference, with Spearman rank correlation coefficients of 0.846±0.0060.846\pm0.006 and 0.850±0.0060.850\pm0.006 showing no statistically significant difference in the quality of the model representation with regard to density prediction. Conclusions: We show that the mapping between representation and mammographic density prediction is significantly affected by label variability. However, the effect of the label variability on the model representation is limited

    A method for exploratory repeated-measures analysis applied to a breast-cancer screening study

    Get PDF
    When a model may be fitted separately to each individual statistical unit, inspection of the point estimates may help the statistician to understand between-individual variability and to identify possible relationships. However, some information will be lost in such an approach because estimation uncertainty is disregarded. We present a comparative method for exploratory repeated-measures analysis to complement the point estimates that was motivated by and is demonstrated by analysis of data from the CADET II breast-cancer screening study. The approach helped to flag up some unusual reader behavior, to assess differences in performance, and to identify potential random-effects models for further analysis.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS481 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Accuracy of Digital Breast Tomosynthesis for Depicting Breast Cancer Subgroups in a UK Retrospective Reading Study (TOMMY Trial)

    Get PDF
    Purpose To compare the diagnostic performance of two-dimensional (2D) mammography, 2D mammography plus digital breast tomosynthesis (DBT), and synthetic 2D mammography plus DBT in depicting malignant radiographic features. Materials and Methods In this multicenter, multireader, retrospective reading study (the TOMMY trial), after written informed consent was obtained, 8869 women (age range, 29–85 years; mean, 56 years) were recruited from July 2011 to March 2013 in an ethically approved study. From these women, a reading dataset of 7060 cases was randomly allocated for independent blinded review of (a) 2D mammography images, (b) 2D mammography plus DBT images, and (c) synthetic 2D mammography plus DBT images. Reviewers had no access to results of previous examinations. Overall sensitivities and specificities were calculated for younger women and those with dense breasts. Results Overall sensitivity was 87% for 2D mammography, 89% for 2D mammography plus DBT, and 88% for synthetic 2D mammography plus DBT. The addition of DBT was associated with a 34% increase in the odds of depicting cancer (odds ratio [OR] = 1.34, P = .06); however, this level did not achieve significance. For patients aged 50–59 years old, sensitivity was significantly higher (P = .01) for 2D mammography plus DBT than it was for 2D mammography. For those with breast density of 50% or more, sensitivity was 86% for 2D mammography compared with 93% for 2D mammography plus DBT (P = .03). Specificity was 57% for 2D mammography, 70% for 2D mammography plus DBT, and 72% for synthetic 2D mammography plusmDBT. Specificity was significantly higher than 2D mammography (P < .001in both cases) and was observed for all subgroups (P < .001 for all cases). Conclusion The addition of DBT increased the sensitivity of 2D mammography in patients with dense breasts and the specificity of 2D mammography for all subgroups. The use of synthetic 2D DBT demonstrated performance similar to that of standard 2D mammography with DBT. DBT is of potential benefit to screening programs, particularly in younger women with dense breasts. © RSNA, 2015The TOMMY Trial (a comparison of digital breast tomosynthesis with mammography in the UK Breast Screening Programme) was supported by the NIHR Health Technology Assessment Programme.This is the final published version of the article. It was originally published in Radiology (Gilbert et al., Radiology, 2015, doi:10.1148/radiol.2015142566). The final version is available at http://dx.doi.org/10.1148/radiol.201514256

    Visually assessed breast density, breast cancer risk and the importance of the craniocaudal view

    Get PDF
    Contains fulltext : 69403.pdf (publisher's version ) (Open Access)INTRODUCTION: Mammographic density is known to be a strong risk factor for breast cancer. A particularly strong association with risk has been observed when density is measured using interactive threshold software. This, however, is a labour-intensive process for large-scale studies. METHODS: Our aim was to determine the performance of visually assessed percent breast density as an indicator of breast cancer risk. We compared the effect on risk of density as measured with the mediolateral oblique view only versus that estimated as the average density from the mediolateral oblique view and the craniocaudal view. Density was assessed using a visual analogue scale in 10,048 screening mammograms, including 311 breast cancer cases diagnosed at that screening episode or within the following 6 years. RESULTS: Where only the mediolateral oblique view was available, there was a modest effect of breast density on risk with an odds ratio for the 76% to 100% density relative to 0% to 25% of 1.51 (95% confidence interval 0.71 to 3.18). When two views were available, there was a considerably stronger association, with the corresponding odds ratio being 6.77 (95% confidence interval 2.75 to 16.67). CONCLUSION: This indicates that a substantial amount of information on risk from percentage breast density is contained in the second view. It also suggests that visually assessed breast density has predictive potential for breast cancer risk comparable to that of density measured using the interactive threshold software when two views are available. This observation needs to be confirmed by studies applying the different measurement methods to the same individuals

    Mammographic density and breast cancer risk in breast screening assessment cases and women with a family history of breast cancer.

    Get PDF
    BACKGROUND: Mammographic density has been shown to be a strong independent predictor of breast cancer and a causative factor in reducing the sensitivity of mammography. There remain questions as to the use of mammographic density information in the context of screening and risk management, and of the association with cancer in populations known to be at increased risk of breast cancer. AIM: To assess the association of breast density with presence of cancer by measuring mammographic density visually as a percentage, and with two automated volumetric methods, Quantra™ and VolparaDensity™. METHODS: The TOMosynthesis with digital MammographY (TOMMY) study of digital breast tomosynthesis in the Breast Screening Programme of the National Health Service (NHS) of the United Kingdom (UK) included 6020 breast screening assessment cases (of whom 1158 had breast cancer) and 1040 screened women with a family history of breast cancer (of whom two had breast cancer). We assessed the association of each measure with breast cancer risk in these populations at enhanced risk, using logistic regression adjusted for age and total breast volume as a surrogate for body mass index (BMI). RESULTS: All density measures showed a positive association with presence of cancer and all declined with age. The strongest effect was seen with Volpara absolute density, with a significant 3% (95% CI 1-5%) increase in risk per 10 cm3 of dense tissue. The effect of Volpara volumetric density on risk was stronger for large and grade 3 tumours. CONCLUSIONS: Automated absolute breast density is a predictor of breast cancer risk in populations at enhanced risk due to either positive mammographic findings or family history. In the screening context, density could be a trigger for more intensive imaging
    • …
    corecore