6 research outputs found

    Electrically Controlled Nano and Micro Actuation in Memristive Switching Devices with On-Chip Gas Encapsulation

    Get PDF
    Nanoactuators are a key component for developing nanomachinery. Here, an electrically driven device yielding actuation stresses exceeding 1 MPa withintegrated optical readout is demonstrated. 10 nm thick Al2O3 electrolyte films are sandwiched between graphene and Au electrodes. These allow reversible room-temperature solid-state redox reactions, producing Al metal and O2 gas in a memristive-type switching device. The resulting high-pressure oxygen micro-fuel reservoirs are encapsulated under the graphene, swelling to heights of up to 1 µm, which can be dynamically tracked by plasmonic rulers. Unlike standard memristors where the memristive redox reaction occurs in single or few conductive filaments, the mechanical deformation forces the creation of new filaments over the whole area of the inflated film. The resulting on–off resistance ratios reach 10^8 in some cycles. The synchronization of nanoactuation and memristive switching in these devices is compatible with large-scale fabrication and has potential for precise and electrically monitored actuation technology

    High-yield parallel fabrication of quantum-dot monolayer single-electron devices displaying Coulomb staircase, contacted by graphene

    Get PDF
    It is challenging for conventional top-down lithography to fabricate reproducible devices very close to atomic dimensions, whereas identical molecules and very similar nanoparticles can be made bottom-up in large quantities, and can be self-assembled on surfaces. The challenge is to fabricate electrical contacts to many such small objects at the same time, so that nanocrystals and molecules can be incorporated into conventional integrated circuits. Here, we report a scalable method for contacting a self-assembled monolayer of nanoparticles with a single layer of graphene. This produces single-electron effects, in the form of a Coulomb staircase, with a yield of 87 ± 13% in device areas ranging from < 800 nm^2 to 16 μm^2, containing up to 650,000 nanoparticles. Our technique offers scalable assembly of ultra-high densities of functional particles or molecules that could be used in electronic integrated circuits, as memories, switches, sensors or thermoelectric generators

    High-yield parallel fabrication of quantum-dot monolayer single-electron devices displaying Coulomb staircase, contacted by graphene.

    Get PDF
    It is challenging for conventional top-down lithography to fabricate reproducible devices very close to atomic dimensions, whereas identical molecules and very similar nanoparticles can be made bottom-up in large quantities, and can be self-assembled on surfaces. The challenge is to fabricate electrical contacts to many such small objects at the same time, so that nanocrystals and molecules can be incorporated into conventional integrated circuits. Here, we report a scalable method for contacting a self-assembled monolayer of nanoparticles with a single layer of graphene. This produces single-electron effects, in the form of a Coulomb staircase, with a yield of 87 ± 13% in device areas ranging from 2 to 16 μm2, containing up to 650,000 nanoparticles. Our technique offers scalable assembly of ultra-high densities of functional particles or molecules that could be used in electronic integrated circuits, as memories, switches, sensors or thermoelectric generators

    Electrically Controlled Nano and Micro Actuation in Memristive Switching Devices with On-Chip Gas Encapsulation

    No full text
    Nanoactuators are a key component for developing nanomachinery. Here, an electrically driven device yielding actuation stresses exceeding 1 MPa withintegrated optical readout is demonstrated. 10 nm thick Al2O3 electrolyte films are sandwiched between graphene and Au electrodes. These allow reversible room-temperature solid-state redox reactions, producing Al metal and O2 gas in a memristive-type switching device. The resulting high-pressure oxygen micro-fuel reservoirs are encapsulated under the graphene, swelling to heights of up to 1 µm, which can be dynamically tracked by plasmonic rulers. Unlike standard memristors where the memristive redox reaction occurs in single or few conductive filaments, the mechanical deformation forces the creation of new filaments over the whole area of the inflated film. The resulting on–off resistance ratios reach 108 in some cycles. The synchronization of nanoactuation and memristive switching in these devices is compatible with large-scale fabrication and has potential for precise and electrically monitored actuation technology

    AFM manipulation of EGaIn microdroplets to generate controlled, on-demand contacts on molecular self-assembled monolayers

    Get PDF
    Liquid metal droplets, such as eutectic gallium–indium (EGaIn), are important in many research areas, such as soft electronics, catalysis, and energy storage. Droplet contact on solid surfaces is typically achieved without control over the applied force and without optimizing the wetting properties in different environments (e.g., in air or liquid), resulting in poorly defined contact areas. In this work, we demonstrate the direct manipulation of EGaIn microdroplets using an atomic force microscope (AFM) to generate repeated, on-demand making and breaking of contact on self-assembled monolayers (SAMs) of alkanethiols. The nanoscale positional control and feedback loop in an AFM allow us to control the contact force at the nanonewton level and, consequently, tune the droplet contact areas at the micrometer length scale in both air and ethanol. When submerged in ethanol, the droplets are highly nonwetting, resulting in hysteresis-free contact forces and minimal adhesion; as a result, we are able to create reproducible geometric contact areas of 0.8–4.5 μm2 with the alkanethiolate SAMs in ethanol. In contrast, there is a larger hysteresis in the contact forces and larger adhesion for the same EGaIn droplet in air, which reduced the control over the contact area (4–12 μm2). We demonstrate the usefulness of the technique and of the gained insights in EGaIn contact mechanics by making well-defined molecular tunneling junctions based on alkanethiolate SAMs with small geometric contact areas of between 4 and 12 μm2 in air, 1 to 2 orders of magnitude smaller than previously achieved
    corecore