519 research outputs found

    Perturbative quantum gauge invariance: Where the ghosts come from

    Full text link
    A condensed introduction to quantum gauge theories is given in the perturbative S-matrix framework; path integral methods are used nowhere. This approach emphasizes the fact that it is not necessary to start from classical gauge theories which are then subject to quantization, but it is also possible to recover the classical group structure and coupling properties from purely quantum mechanical principles. As a main tool we use a free field version of the Becchi-Rouet-Stora-Tyutin gauge transformation, which contains no interaction terms related to a coupling constant. This free gauge transformation can be formulated in an analogous way for quantum electrodynamics, Yang-Mills theories with massless or massive gauge bosons and quantum gravity.Comment: 28 pages, LATEX. Some typos corrected, version to be publishe

    Causal construction of the massless vertex diagram

    Get PDF
    The massless one-loop vertex diagram is constructed by exploiting the causal structure of the diagram in configuration space, which can be translated directly into dispersive relations in momentum space.Comment: 14 pages, LATEX with style file, corresponds to published versio

    Regularization in quantum field theory from the causal point of view

    Full text link
    The causal approach to perturbative quantum field theory is presented in detail, which goes back to a seminal work by Henri Epstein and Vladimir Jurko Glaser in 1973. Causal perturbation theory is a mathematically rigorous approach to renormalization theory, which makes it possible to put the theoretical setup of perturbative quantum field theory on a sound mathematical basis. Epstein and Glaser solved this problem for a special class of distributions, the time-ordered products, that fulfill a causality condition, which itself is a basic requirement in axiomatic quantum field theory. In their original work, Epstein and Glaser studied only theories involving scalar particles. In this review, the extension of the method to theories with higher spin, including gravity, is presented. Furthermore, specific examples are presented in order to highlight the technical differences between the causal method and other regularization methods, like, e.g. dimensional regularization.Comment: 75 pages, 8 figures, style file included, some comments and references adde

    Holographic entropy bound from gravitational Fock space truncation

    Full text link
    A simplified derivation of Yurtsever's result, which states that the entropy of a truncated bosonic Fock space is given by a holographic bound when the energy of the Fock states is constrained gravitationally, is given for asymptotically flat spacetimes with arbitrary dimension d greater or equal to four. For this purpose, a scalar field confined to a spherical volume in d-dimensional spacetime is considered. Imposing an upper bound on the total energy of the corresponding Fock states which ensures that the system is in a stable configuration against gravitational collapse and imposing a cutoff on the maximum energy of the field modes of the order of the Planck energy leads to an entropy bound of holographic type. A simple derivation of the entropy bound is also given for the fermionic case.Comment: 5 pages, Latex (incl. style file), minor typos correcte

    Electron-positron pair production in the external electromagnetic field of colliding relativistic heavy ions

    Get PDF
    The results concerning the e+e−e^+e^- production in peripheral highly relativistic heavy-ion collisions presented in a recent paper by Baltz {\em{et al.}} are rederived in a very straightforward manner. It is shown that the solution of the Dirac equation directly leads to the multiplicity, i.e. to the total number of electron-positron pairs produced by the electromagnetic field of the ions, whereas the calculation of the single pair production probability is much more involved. A critical observation concerns the unsolved problem of seemingly absent Coulomb corrections (Bethe-Maximon corrections) in pair production cross sections. It is shown that neither the inclusion of the vacuum-vacuum amplitude nor the correct interpretation of the solution of the Dirac equation concerning the pair multiplicity is able the explain (from a fundamental point of view) the absence of Coulomb corrections. Therefore the contradiction has to be accounted to the treatment of the high energy limit.Comment: 6 pages, 4 Postscript figures, uses svjour.cls/svepj.cl

    Gauge Independence of the S-Matrix in the Causal Approach

    Get PDF
    The gauge dependence of the time-ordered products for Yang-Mills theories is analysed in perturbation theory by means of the causal method of Epstein and Glaser together with perturbative gauge invariance. This approach allows a simple inductive proof of the gauge independence of the physical S-matrix.Comment: 19 pages, latex, 1 figur

    kGamma distributions in granular packs

    Full text link
    It has been recently pointed out that local volume fluctuations in granular packings follow remarkably well a shifted and rescaled Gamma distribution named the kGamma distribution [T. Aste, T. Di Matteo, Phys. Rev. E 77 (2008) 021309]. In this paper we confirm, extend and discuss this finding by supporting it with additional experimental and simulation data.Comment: 10 pages, 5 figure

    Entropy Bound with Generalized Uncertainty Principle in General Dimensions

    Full text link
    In this letter, the entropy bound for local quantum field theories (LQFT) is studies in a class of models of the generalized uncertainty principle(GUP) which predicts a minimal length as a reflection of the quantum gravity effects. Both bosonic and fermionic fields confined in arbitrary spatial dimension d≥4d\geq4 ball Bd{\cal B}^{d} are investigated. It is found that the GUP leads to the same scaling Ad−2(d−3)/(d−2)A_{d-2}^{(d-3)/(d-2)} correction to the entropy bound for bosons and fermions, although the coefficients of this correction are different for each case. Based on our calculation, we conclude that the GUP effects can become manifest at the short distance scale. Some further implications and speculations of our results are also discussed.Comment: 8 pages, topos corrected and references adde

    Resummation of mass terms in perturbative massless quantum field theory

    Get PDF
    The neutral massless scalar quantum field Φ\Phi in four-dimensional space-time is considered, which is subject to a simple bilinear self-interaction. Is is well-known from renormalization theory that adding a term of the form −m22Φ2-\frac{m^2}{2} \Phi^2 to the Lagrangean has the formal effect of shifting the particle mass from the original zero value to m after resummation of all two-leg insertions in the Feynman graphs appearing in the perturbative expansion of the S-matrix. However, this resummation is accompanied by some subtleties if done in a proper mathematical manner. Although the model seems to be almost trivial, is shows many interesting features which are useful for the understanding of the convergence behavior of perturbation theory in general. Some important facts in connection with the basic principles of quantum field theory and distribution theory are highlighted, and a remark is made on possible generalizations of the distribution spaces used in local quantum field theory. A short discussion how one can view the spontaneous breakdown of gauge symmetry in massive gauge theories within a massless framework is presented.Comment: 15 pages, LaTeX (style files included), one section adde
    • …
    corecore