60 research outputs found

    Risks and opportunities in arbitrage and market-making in blockchain-based currency markets. Part 1 : Risks

    Full text link
    This study provides a practical introduction to high-frequency trading in blockchain-based currency markets. These types of markets have some specific characteristics that differentiate them from the stock markets, such as a large number of trading exchanges (centralized and decentralized), relative simplicity in moving funds from one exchange to another, and the large number of new currencies that have very little liquidity. This study analyzes the possible risks that specifically characterize this type of trading operation, the potential opportunities, and the algorithms that are mostly used, providing information that can be useful for practitioners who intend to operate in these markets by providing (and risking) liquidity

    Trajectory Perturbation in Surrogate Safety Indicators

    Get PDF
    Abstract Traffic conflicts based surrogate safety indicators have been applied extensively on real trajectories and in simulation. Such indicators can be useful to assess the safety of a given scenario without the need to use real crash data (which in many cases may be unavailable). Unfortunately, all traffic conflict indicators that are commonly used have a structural limitation: they are not able to consider potential conflicts with roadside obstacles or barriers and conflicts between vehicles which are travelling on non-conflicting trajectories. This limitation is a serious limitation since crash data analy sis shows that at least 40% of fatal crashes are originated by single vehicle accidents against a fixed object or by vehicles travelling in opposite directions. This paper is intended as a concept paper that presents an alternative view on conflict safety indicators showing that new indicators can be generated by the perturbation of vehicle trajectories overcoming the above indicated limitations

    A Review of Blockchain-Based Systems in Transportation

    Get PDF
    This paper presents a literature review about the application of blockchain-based systems in transportation. The main aim was to identify, through the implementation of a multi-step methodology: current research-trends, main gaps in the literature, and possible future challenges. First, a bibliometric analysis was carried out to obtain a broad overview of the topic of interest. Subsequently, the most influential contributions were analysed in depth, with reference to the following two areas: supply chain and logistics; road traffic management and smart cities. The most important result is that the blockchain technology is still in an early stage, but appears extremely promising, given its possible applications within multiple fields, such as food track and trace, regulatory compliance, smart vehicles' security, and supply-demand matching. Much effort is still necessary for reaching the maturation stage because several models have been theorized in recent years, but very few have been implemented within real contexts. Moreover, the link blockchain-sustainability was explored, showing that this technology could be the trigger for limiting food waste, reducing exhaust gas emissions, favouring correct urban development, and, in general, improving quality of life

    A new microsimulation model for the evaluation of traffic safety performances

    Get PDF
    Some papers have been recently presented (Cunto and Saccomanno 2007, Cunto and Saccomanno 2008, Saccomanno et al. 2008) on the potential of traffic microsimulation for the analysis of road safety. In particular, studies have confirmed that the reproduction by simulation of user behaviour under different flow and geometry conditions, can identify a potential incident hazard and allow to take appropriate countermeasures at specific points of the road network. The objective of this paper is to assess the validity of this approach; for this reason a microsimulation model and an automatic video detection system have been developed. The microscopic model allows the estimation of road safety performance through a series of indicators (Deceleration Rate to Avoid Crash, Time to Collision, Proportion of Stopping Distance), representing interactions in real time, between different pairs of vehicles belonging to the traffic stream. When these indicators take a certain critical value, a possible accident scenario is identified. The microscopic simulation model is used combined with a new video image traffic detection algorithm to calculate vehicle trajectories. Microscopic traffic flow parameters obtained by video detection are used to calibrate the microsimulation model, and the safety performance indicators obtained by the real vehicles trajectories can be compared with simulated scenarios where safety performance indicators are obtained on the simulated trajectories. Results indicate that the methodology can be useful in the estimation of safety performance indicators and in evaluating traffic control measures

    mobile systems applied to traffic management and safety a state of the art

    Get PDF
    Abstract Mobile systems applied to traffic management and control and traffic safety have the potential to shape the future of road transportation. The following innovations, that will be deployed on a large scale, could reshape road traffic management practices: – the implementation of connected vehicles with global navigation satellite (GNSS) system receivers; – the autonomous car revolution; – the spreading of smartphone-based systems and the development of Mobile Cooperative Web 2.0 which is laying the base for future development of systems that will also incorporate connected and autonomous vehicles; – an increasing need for sustainability of transportation in terms of energy efficiency, traffic safety and environmental issues. This paper intends to provide a state of the art on current systems and an anticipation of how mobile systems applied to traffic management and safety could lead to a completely new transportation system in which safety and congestion issues are finally properly addressed

    The Computer System Architecture of our first real-time real-world experiment of adaptive traffic signals with "connected" vehicles

    Get PDF
    Abstract Connected vehicles can transmit real-time information to traffic control management systems. Despite the recent technical advances of telecommunication networks and mobile computing there have been no real-time adaptive traffic signal control experiments with connected vehicles. Most of the research in this field has been carried out only with simulations. In this work we present the computer system that was adopted to regulate traffic signals in real-time with "smartphone-connected" vehicles as the only source of information. We introduce the description of the computer system architecture that was deployed in an experiment of a Floating Car Data (FCD)-based adaptive traffic signal in which a traffic signal has been regulated in real-time with 100% "smartphone-connected" vehicles. The description of the system based on commonly-used technologies could help others to develop and deploy new traffic signal management systems in new "connected" intersections

    A Review of the use of traffic simulation for the evaluation of traffic safety levels: can we use simulation to predict crashes?

    Get PDF
    Abstract This paper presents a literature review on the application of traffic simulation for the evaluation of traffic safety levels. The main aim is to identify, through the implementation of a multi-step methodology current research-trends, main gaps in the literature and possible future challenges. First, a bibliometric analysis is carried out to obtain a broad overview of the topic of interest. Subsequently, the most influential contributions are analysed in-depth, with specific attention to specific issues

    The use of a Blockchain-based System in Traffic Operations to promote Cooperation among Connected Vehicles

    Get PDF
    Abstract This paper intends to present some ideas for the implementation of cooperative ITS systems based on the Blockchain Technology (BT) concept. Blockchain technology has been recently introduced and, in this paper, we discuss a system that is based on a dedicated blockchain, able to involve both drivers and city administrations in the adoption of promising and innovative technologies that will create cooperation among connected vehicles. The proposed blockchain-based system can allow city administrators to reward drivers when they are willing to share travel data. The system manages in a special way the creation of new coins which are assigned to drivers and institutions participating actively in the system. Moreover, the system allows keeping a complete track of all transactions and interactions between drivers and city management on a completely open and shared platform. The main idea is to combine connected vehicles with BT to promote Cooperative ITS use and a better use of infrastructures

    A review of traffic signal control methods and experiments based on Floating Car Data (FCD)

    Get PDF
    Abstract This paper intends to give a short review of the state of the art on the use of floating car data concerning the management of traffic flow at signalized intersections. New technologies such as connected and autonomous vehicles and Co-operative Intelligent Transportation Systems (C-ITS) are going to change the future of traffic control and management. Traffic signal control systems can be reorganized by using Floating Car Data (FCD), yet the concept of floating car data (FCD) has been mainly studied to gain traffic information and/or signal information. Only recent works have been focalizing on the potential application of FCD for traffic signal real-time control. This paper aims to evidence the most important concepts that can be extracted from the literature on this important topic
    • …
    corecore