372 research outputs found
Intrinsic defects in silicon carbide LED as a perspective room temperature single photon source in near infrared
Generation of single photons has been demonstrated in several systems.
However, none of them satisfies all the conditions, e.g. room temperature
functionality, telecom wavelength operation, high efficiency, as required for
practical applications. Here, we report the fabrication of light emitting
diodes (LEDs) based on intrinsic defects in silicon carbide (SiC). To fabricate
our devices we used a standard semiconductor manufacturing technology in
combination with high-energy electron irradiation. The room temperature
electroluminescence (EL) of our LEDs reveals two strong emission bands in
visible and near infrared (NIR), associated with two different intrinsic
defects. As these defects can potentially be generated at a low or even single
defect level, our approach can be used to realize electrically driven single
photon source for quantum telecommunication and information processing
Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects
Bulk silicon carbide (SiC) is a very promising material system for
bio-applications and quantum sensing. However, its optical activity lies beyond
the near infrared spectral window for in-vivo imaging and fiber communications
due to a large forbidden energy gap. Here, we report the fabrication of SiC
nanocrystals and isolation of different nanocrystal fractions ranged from 600
nm down to 60 nm in size. The structural analysis reveals further fragmentation
of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline
quality, separated by amorphization areas. We use neutron irradiation to create
silicon vacancies, demonstrating near infrared photoluminescence. Finally, we
detect, for the first time, room-temperature spin resonances of these silicon
vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use
them not only as in-vivo luminescent markers, but also as magnetic field and
temperature sensors, allowing for monitoring various physical, chemical and
biological processes.Comment: 5 pages, 4 figure
Excitation and coherent control of spin qudit modes with sub-MHz spectral resolution
Quantum bit or qubit is a two-level system, which builds the foundation for
quantum computation, simulation, communication and sensing. Quantum states of
higher dimension, i.e., qutrits (D = 3) and especially qudits (D = 4 or
higher), offer significant advantages. Particularly, they can provide
noise-resistant quantum cryptography, simplify quantum logic and improve
quantum metrology. Flying and solid-state qudits have been implemented on the
basis of photonic chips and superconducting circuits, respectively. However,
there is still a lack of room-temperature qudits with long coherence time and
high spectral resolution. The silicon vacancy centers in silicon carbide (SiC)
with spin S = 3/2 are quite promising in this respect, but until now they were
treated as a canonical qubit system. Here, we apply a two-frequency protocol to
excite and image multiple qudit modes in a SiC spin ensemble under ambient
conditions. Strikingly, their spectral width is about one order of magnitude
narrower than the inhomogeneous broadening of the corresponding spin resonance.
By applying Ramsey interferometry to these spin qudits, we achieve a spectral
selectivity of 600 kHz and a spectral resolution of 30 kHz. As a practical
consequence, we demonstrate absolute DC magnetometry insensitive to thermal
noise and strain fluctuations
Numerical and experimental studies of the carbon etching in EUV-induced plasma
We have used a combination of numerical modeling and experiments to study
carbon etching in the presence of a hydrogen plasma. We model the evolution of
a low density EUV-induced plasma during and after the EUV pulse to obtain the
energy resolved ion fluxes from the plasma to the surface. By relating the
computed ion fluxes to the experimentally observed etching rate at various
pressures and ion energies, we show that at low pressure and energy, carbon
etching is due to chemical sputtering, while at high pressure and energy a
reactive ion etching process is likely to dominate
All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide
We uncover the fine structure of a silicon vacancy in isotopically purified
silicon carbide (4H-SiC) and find extra terms in the spin Hamiltonian,
originated from the trigonal pyramidal symmetry of this spin-3/2 color center.
These terms give rise to additional spin transitions, which are otherwise
forbidden, and lead to a level anticrossing in an external magnetic field. We
observe a sharp variation of the photoluminescence intensity in the vicinity of
this level anticrossing, which can be used for a purely all-optical sensing of
the magnetic field. We achieve dc magnetic field sensitivity of 87 nT
Hz within a volume of mm at room temperature
and demonstrate that this contactless method is robust at high temperatures up
to at least 500 K. As our approach does not require application of
radiofrequency fields, it is scalable to much larger volumes. For an optimized
light-trapping waveguide of 3 mm the projection noise limit is below 100
fT Hz.Comment: 12 pages, 6 figures; additional experimental data and an extended
theoretical analysis are added in the second versio
Radiative corrections for pion and kaon production at colliders of energies below 2 GeV
Processes of electron-positron annihilation into charged pions and kaons are
considered. Radiative corrections are taken into account exactly in the first
order and within the leading logarithmic approximation in higher orders. A
combined approach for accounting exact calculations and electron structure
functions is used. An accuracy of the calculation can be estimated about 0.2%.Comment: 16 pages, LaTeX, epsfig.sty, 3 PostScript figure
Surface state charge dynamics of a high-mobility three dimensional topological insulator
We present a magneto-optical study of the three-dimensional topological
insulator, strained HgTe using a technique which capitalizes on advantages of
time-domain spectroscopy to amplify the signal from the surface states. This
measurement delivers valuable and precise information regarding the surface
state dispersion within <1 meV of the Fermi level. The technique is highly
suitable for the pursuit of the topological magnetoelectric effect and axion
electrodynamics.Comment: Published version, online Sept 23, 201
- …