21 research outputs found

    Enhanced virtual microscopy for collaborative education

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Curricular reform efforts and a desire to use novel educational strategies that foster student collaboration are challenging the traditional microscope-based teaching of histology. Computer-based histology teaching tools and Virtual Microscopes (VM), computer-based digital slide viewers, have been shown to be effective and efficient educational strategies. We developed an open-source VM system based on the Google Maps engine to transform our histology education and introduce new teaching methods. This VM allows students and faculty to collaboratively create content, annotate slides with markers, and it is enhanced with social networking features to give the community of learners more control over the system.</p> <p>Results</p> <p>We currently have 1,037 slides in our VM system comprised of 39,386,941 individual JPEG files that take up 349 gigabytes of server storage space. Of those slides 682 are for general teaching and available to our students and the public; the remaining 355 slides are used for practical exams and have restricted access. The system has seen extensive use with 289,352 unique slide views to date. Students viewed an average of 56.3 slides per month during the histology course and accessed the system at all hours of the day. Of the 621 annotations added to 126 slides 26.2% were added by faculty and 73.8% by students. The use of the VM system reduced the amount of time faculty spent administering the course by 210 hours, but did not reduce the number of laboratory sessions or the number of required faculty. Laboratory sessions were reduced from three hours to two hours each due to the efficiencies in the workflow of the VM system.</p> <p>Conclusions</p> <p>Our virtual microscope system has been an effective solution to the challenges facing traditional histopathology laboratories and the novel needs of our revised curriculum. The web-based system allowed us to empower learners to have greater control over their content, as well as the ability to work together in collaborative groups. The VM system saved faculty time and there was no significant difference in student performance on an identical practical exam before and after its adoption. We have made the source code of our VM freely available and encourage use of the publically available slides on our website.</p

    Teaching the Process of Science: Faculty Perceptions and an Effective Methodology

    Get PDF
    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy

    Interdisciplinary Laboratory Course Facilitating Knowledge Integration, Mutualistic Teaming, and Original Discovery

    No full text
    Experiencing the thrill of an original scientific discovery can be transformative to students unsure about becoming a scientist, yet few courses offer authentic research experiences. Increasingly, cutting-edge discoveries require an interdisciplinary approach not offered in current departmental-based courses. Here, we describe a one-semester, learning laboratory course on organismal biomechanics offered at our large research university that enables interdisciplinary teams of students from biology and engineering to grow intellectually, collaborate effectively, and make original discoveries. To attain this goal, we avoid traditional "cookbook" laboratories by training 20 students to use a dozen research stations. Teams of five students rotate to a new station each week where a professor, graduate student, and/or team member assists in the use of equipment, guides students through stages of critical thinking, encourages interdisciplinary collaboration, and moves them toward authentic discovery. Weekly discussion sections that involve the entire class offer exchange of discipline-specific knowledge, advice on experimental design, methods of collecting and analyzing data, a statistics primer, and best practices for writing and presenting scientific papers. The building of skills in concert with weekly guided inquiry facilitates original discovery via a final research project that can be presented at a national meeting or published in a scientific journal
    corecore