14 research outputs found

    Thermal analysis of a BIPV system by various modelling approaches

    Get PDF
    This work presents various models developed and implemented within the SOPHIA European project in order to thermally characterize PV modules in a rooftop BIPV configuration. Different approaches have been considered, including a linear model, lumped elements models and models that make use of commercial software solvers. The validation of the models performed by comparing the results of simulations with experimental data recorded on a test bench over an entire year is presented and discussed on a seasonal basis. The results have shown that all the models implemented allow achieving a good prediction of the PV modules back surface temperature, with the minimum value of the coefficient of determination R2 around 95% on a yearly basis. Moreover, the influence of season weather conditions and of the incident solar irradiance magnitude on the accuracy of the considered thermal models is highlighted. The major result of the present study is represented by the fact that it has been possible to perform a better thermal characterization of the BIPV module by tuning some of the heat transfer coefficients, such as those relative to the effects of the wind velocity, and to the evaluation of sky temperature.The experimental data used for the thermal simulation of BIPV system behavior were obtained in the framework of the project Performance BIPV supported by the French research agency (ANR), within the research program ANR HABISOL. Authors would like to thank the European Community that supported the SOPHIA project with the funding of FP7-SOPHIA grant agreement no. 262533

    The e-learning platform of the FP7-SOPHIA Project: obtanied results and perspective for its future exploitation

    Get PDF
    FP7-SOPHIA, the European PV Research Infrastructure project coordinated by CEA-INES ended on 31st of January 2015. The project focused on strengthening and optimising the research capabilities of outstanding European Research Infrastructures by pulling together numerous scientists and researchers of more than 48 relevant Research Infrastructures to share a common vision and to conduct efficient and coordinated research work in the field of PV technologies. SOPHi@Webinar is the internal e-learning platform that has organized a set of online courses/seminaries/guest lectures in parallel to more conventional training initiatives held physically. It has also been opened to non-SOPHIA members

    Performances de capteurs solaires PV/T hybrides bi-fluides intégrables à l\u27enveloppe des bâtiments. Etude expérimentale et modélisation adaptée

    No full text
    Cette thèse se bas sur les projets Slar Steel (ADEME/PUCA) et Toit PV-Th (ANR-PREBAT). Son objectif est de concevoir une configuration innovante de composant Hybride multi-fonctionnel et intégrable à l\u27enveloppe des bâtis, basée sur la juxtaposition des fonctions de production thermique et électrique. Ainsi, ont été proposées deux configurations de capteurs solaires PV/T hybrides bi-fluides (à air et à eau) intégrables en toiture et composé de modules PV à support métallique nervuré. A l\u27intérieur des nervures, sont disposés des systèmes producteurs d\u27eau chaude. Des modèles thermiques et électriques de ces prototypes ont été développés progressivement sous TRNSYS et validés étape par étape à partir d\u27expérimentations menées en régime permanent puis dynamique. Ces étapes ont permis d\u27évaluer leurs productivités thermiques et électriques et le taux de couverture solaire des besoins énergétiques pour des configurations types afin de les comparer à la production de composants standards

    Dynamic study of a new concept of photovoltaic–thermal hybrid collector

    No full text
    International audienceThis work presents the development of a concept of solar Photovoltaic/Thermal (PV/T) hybrid air collector. This type of collector combines the preheating of air through a gap at the underside of the PV modules in addition to the ordinary function of electricity production. The cooling of PV modules by heat extraction can improve the electrical efficiency. In this paper, a simplified dynamic two-dimensional mathematical model of solar PV/T hybrid air collector with a metal absorber is presented. The validation of this numerical model with the measured data obtained with a full-scale test bench located near Lyon is proposed. Then, a numerical parametric study is undertaken to determine the effect of the air gap ventilation type on the system preheated air thermal production and electrical production. The results show that forced ventilation provides the higher value of thermal production but natural ventilation is sufficient to cool the integrated PV modules

    Performances de capteurs solaires PV/T hybrides bi-fluides intégrables à l'enveloppe des bâtiments (Exeperimental study and adapted modelling)

    No full text
    Cette thèse se bas sur les projets Slar Steel (ADEME/PUCA) et Toit PV-Th (ANR-PREBAT). Son objectif est de concevoir une configuration innovante de composant Hybride multi-fonctionnel et intégrable à l enveloppe des bâtis, basée sur la juxtaposition des fonctions de production thermique et électrique. Ainsi, ont été proposées deux configurations de capteurs solaires PV/T hybrides bi-fluides (à air et à eau) intégrables en toiture et composé de modules PV à support métallique nervuré. A l intérieur des nervures, sont disposés des systèmes producteurs d eau chaude. Des modèles thermiques et électriques de ces prototypes ont été développés progressivement sous TRNSYS et validés étape par étape à partir d expérimentations menées en régime permanent puis dynamique. Ces étapes ont permis d évaluer leurs productivités thermiques et électriques et le taux de couverture solaire des besoins énergétiques pour des configurations types afin de les comparer à la production de composants standards.This work is based on the Solar Steel program and on the PV-Th roof ANR-PREBAT program. The purpose of this work is to design a new configuration of multi-functional hybrid solar collector based on the superposition of the thermal and electric functions. Then, we proposed two prototypes of solar PV/T hybrid bi-fluids collector (air and water) which can be integrated into roof and are composed of some PV modules stuck on a ribbed metal absorber. Inside the rib, are installed hot water producing devices. Thermal and electrical models of these components have been developed gradually by the meaning of TRNSYS and have been validated step by step on the basis of experiments conducted in steady state and in dynamic state. These steps have permit to evaluate their thermal and electrical productivities and the energy needs solar coverage for various standard configurations in order to compare them to the productivity of some standard components.VILLEURBANNE-DOC'INSA LYON (692662301) / SudocSudocFranceF

    PERFORMANCE OF A LARGE SIZE PHOTOVOLTAIC MODULE FOR FACADE INTEGRATION

    No full text
    International audienceBuilding integration of solar photovoltaic components is a relevant approach for contributing to energy decarbonisation of building applications and so, to reach European climate goals. Thus, in this paper, a large size solar component is studied experimentally and numerically to validate its suitability as building construction element, from the thermal, energy and mechanical points of view. Moreover, a simple linear model of its monthly electrical performance and temperature is developed. After its integration in landscape position using a metal structure on the southern insulated concrete wall of a real building, the solar system was instrumented and monitored during more than one year. Its thermal behaviour and electrical production, and the visible mechanical deformation of the mounting structure were assessed. Monthly photovoltaic performance ratios between 0.5 and 0.7, and efficiencies between 5.9% and 8.3%, were obtained during tests. The module maximum temperature was between 46.5 °C in November 2018 and 63.0 °C in September 2019. No visual degradation was noted. Then, numerical studies of the system in three sites, using the linear model, highlighted most relevant installation configurations, like a south -orientation at Nice. As further study, the system performance reliability will be evaluated after at least three years of operation
    corecore