4 research outputs found

    Intermittent Reduction in Ocean Heat Transport Into the Getz Ice Shelf Cavity During Strong Wind Events

    Get PDF
    The flow of warm water toward the western Getz Ice Shelf along the Siple Trough, West Antarctica, is intermittently disrupted during short events of Winter Water deepening. Here we show, using mooring records, that these 5–10 days-long events reduced the heat transport toward the ice shelf cavity by 25% in the winter of 2016. The events coincide with strong easterly winds and polynya opening in the region, but the Winter Water deepening is controlled by non-local coastal Ekman downwelling rather than polynya-related surface fluxes. The thermocline depth anomalies are forced by Ekman downwelling at the northern coast of Siple Island and propagate to the ice front as a coastal trapped wave. During the events, the flow at depth does no longer continue along isobaths into the ice shelf cavity but aligns with the ice front.publishedVersio

    Intermittent Reduction in Ocean Heat Transport Into the Getz Ice Shelf Cavity During Strong Wind Events

    No full text
    The flow of warm water toward the western Getz Ice Shelf along the Siple Trough, West Antarctica, is intermittently disrupted during short events of Winter Water deepening. Here we show, using mooring records, that these 5–10 days-long events reduced the heat transport toward the ice shelf cavity by 25% in the winter of 2016. The events coincide with strong easterly winds and polynya opening in the region, but the Winter Water deepening is controlled by non-local coastal Ekman downwelling rather than polynya-related surface fluxes. The thermocline depth anomalies are forced by Ekman downwelling at the northern coast of Siple Island and propagate to the ice front as a coastal trapped wave. During the events, the flow at depth does no longer continue along isobaths into the ice shelf cavity but aligns with the ice front

    Intermittent Reduction in Ocean Heat Transport Into the Getz Ice Shelf Cavity During Strong Wind Events

    No full text
    The flow of warm water toward the western Getz Ice Shelf along the Siple Trough, West Antarctica, is intermittently disrupted during short events of Winter Water deepening. Here we show, using mooring records, that these 5–10 days-long events reduced the heat transport toward the ice shelf cavity by 25% in the winter of 2016. The events coincide with strong easterly winds and polynya opening in the region, but the Winter Water deepening is controlled by non-local coastal Ekman downwelling rather than polynya-related surface fluxes. The thermocline depth anomalies are forced by Ekman downwelling at the northern coast of Siple Island and propagate to the ice front as a coastal trapped wave. During the events, the flow at depth does no longer continue along isobaths into the ice shelf cavity but aligns with the ice front

    On the circulation, water mass distribution, and nutrient concentrations of the western Chukchi Sea

    No full text
    Substantial amounts of nutrients and carbon enter the Arctic Ocean from the Pacific Ocean through the Bering Strait, distributed over three main pathways. Water with low salinities and nutrient concentrations takes an eastern route along the Alaskan coast, as Alaskan Coastal Water. A central pathway exhibits intermediate salinity and nutrient concentrations, while the most nutrient-rich water enters the Bering Strait on its western side. Towards the Arctic Ocean, the flow of these water masses is subject to strong topographic steering within the Chukchi Sea with volume transport modulated by the wind field. In this contribution, we use data from several sections crossing Herald Canyon collected in 2008 and 2014 together with numerical modelling to investigate the circulation and transport in the western part of the Chukchi Sea. We find that a substantial fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. This water then contributes to the high-nutrient waters of Herald Canyon. The bottom of the canyon has the highest nutrient concentrations, likely as a result of addition from the degradation of organic matter at the sediment surface in the East Siberian Sea. The flux of nutrients (nitrate, phosphate, and silicate) and dissolved inorganic carbon in Bering Summer Water and Winter Water is computed by combining hydrographic and nutrient observations with geostrophic transport referenced to lowered acoustic Doppler current profiler (LADCP) and surface drift data. Even if there are some general similarities between the years, there are differences in both the temperature–salinity and nutrient characteristics. To assess these differences, and also to get a wider temporal and spatial view, numerical modelling results are applied. According to model results, high-frequency variability dominates the flow in Herald Canyon. This leads us to conclude that this region needs to be monitored over a longer time frame to deduce the temporal variability and potential trends
    corecore