36 research outputs found

    К вопросу о психолингвистической концепции перевода

    Get PDF
    Dengue virus (DENV) is the leading cause of mosquito-borne viral illness and death in humans. Like many viruses, DENV has evolved potent mechanisms that abolish the antiviral response within infected cells. Nevertheless, several in vivo studies have demonstrated a key role of the innate immune response in controlling DENV infection and disease progression. Here, we report that sensing of DENV infected cells by plasmacytoid dendritic cells (pDCs) triggers a robust TLR7-dependent production of IFNα, concomitant with additional antiviral responses, including inflammatory cytokine secretion and pDC maturation. We demonstrate that unlike the efficient cell-free transmission of viral infectivity, pDC activation depends on cell-to-cell contact, a feature observed for various cell types and primary cells infected by DENV, as well as West Nile virus, another member of the Flavivirus genus. We show that the sensing of DENV infected cells by pDCs requires viral envelope protein-dependent secretion and transmission of viral RNA. Consistently with the cell-to-cell sensing-dependent pDC activation, we found that DENV structural components are clustered at the interface between pDCs and infected cells. The actin cytoskeleton is pivotal for both this clustering at the contacts and pDC activation, suggesting that this structural network likely contributes to the transmission of viral components to the pDCs. Due to an evolutionarily conserved suboptimal cleavage of the precursor membrane protein (prM), DENV infected cells release uncleaved prM containing-immature particles, which are deficient for membrane fusion function. We demonstrate that cells releasing immature particles trigger pDC IFN response more potently than cells producing fusion-competent mature virus. Altogether, our results imply that immature particles, as a carrier to endolysosome-localized TLR7 sensor, may contribute to regulate the progression of dengue disease by eliciting a strong innate response

    Mécanisme de transmission de signal viral immunostimulateur des cellules infectés aux cellules dendritiques plasmacytoïdes par contacts cellulaires

    No full text
    Les cellules dendritiques plasmacytoides (pDCs), spécialisées dans la réponse antivirale, produisent de fortes quantités d’interféron (IFN) lorsqu’elles sont en contact avec des cellules infectées par des virus. Pourtant, les pDCs sont réfractaires à l’infection. Ce mécanisme d’activation de la réponse antivirale par le contact physique avec les cellules infectées, nouvellement découvert, constituerait un aspect général des voies de défense de l’hôte contre les virus.En utilisant le virus de l’Hépatite C et de la Dengue comme modèle viral, nous avons observé une réorganisation moléculaire au niveau des contacts entre les pDCs et les cellules infectées. La polarisation d’éléments cellulaires, notamment de régulateurs du cytosquelette d’actine et de molécules de la machinerie d’endocytose en direction du contact favoriserait son établissement et/ou sa stabilisation ainsi qu’une transmission efficace d’éléments viraux, ensuite reconnus par les pDCs. Nous avons également démontré que les pDCs effectuent des contacts plus stables et présentent une polarisation plus importante d’éléments cellulaires aux contacts avec des cellules infectées qu’avec des cellules non infectées. Ces interactions présentent des similarités avec les synapses, contacts cellulaires organisés impliqués dans la communication cellulaire. Notamment, les synapses immunologiques jouent un rôle important dans l’activation de la réponse immunitaire adaptative. Nous proposons donc de nommer ces contacts activateurs de pDCs des « synapses immunologiques innées ». Ce mécanisme représenterait un processus de reconnaissance des infections par les pDCs généralisable à différents types de virus, par « scan » du statut infectieux des cellules par contact. Nos résultats suggèrent également que des éléments viraux s’accumulent au niveau de ces contacts. Ces éléments diffèrent en fonction du type d’infection. Notamment, nous avons mis en évidence dans un contexte d’infection par le virus de la Dengue que des structures virales non canoniques et non infectieuses, différentes des particules virales infectieuses dites « classiques », jouent un rôle important dans l’activation de la réponse antivirale. Notre travail apporte un nouvel angle d’analyse de l’activation des pDCs et des stratégies de détection des infections virales par l’hôte.Plasmacytoid dendritic cells (pDCs), specialized in the antiviral response, are important producers of interferons (IFN) after cell-cell contacts with virally infected cells. Nonetheless, they are poorly permissive to the majority of viral infections. This newly uncovered mechanism of the activation of an antiviral response by physical cell-cell contacts with infected cells could constitute a general aspect of the host defense against viral infections.Using Hepatitis C virus and Dengue virus as models, we observed a molecular reorganization of the contacts between pDCs and infected cells. The polarization toward contacts of cellular elements, such as regulators of the actin cytoskeleton and components of the endocytic machinery could favor their establishment and/or their stabilization, as well as the efficient transmission of viral elements that are recognized by pDCs. We also demonstrated that pDCs contacts with infected cells are more stable and present a higher polarization of cellular components than contacts with uninfected cells. These interactions present similarities with synapses, a type of organized contact involved in cell-to-cell communication. Notably, immunological synapses are known to play an important role in the activation of the adaptive immune response. We thus propose to call these pDC-activating contacts « innate immunological synapses ». This mechanism could represent a general process of recognition of viral infections by pDCs, by « scanning » the infectious status of the cells by cell-cell contacts. Our results also suggest that viral elements cluster at the level of contacts. These elements differ depending on the type of viral infection. Notably, we observed in the context of Dengue virus infection that non-infectious non-canonical viral structures, that differ from the « classical » viral infectious particles, play an important role in the activation of the antiviral response. Our work brings a new light in the mechanisms of pDC activation and in the host defense strategies against viral infection

    Regulation of the Host Antiviral State by Intercellular Communications

    No full text
    Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins) and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic

    [Modulation of permissiveness and antiviral response against hepatitis C virus by interferon lambda-associated polymorphism].

    No full text
    Affiliations ECOFECTInternational audienc

    Les exosomes

    No full text
    International audienc

    Cell-Cell Sensing of Viral Infection by Plasmacytoid Dendritic Cells

    No full text
    International audienceAll cells possess signaling pathways designed to trigger antiviral responses, notably characterized by type I interferon (IFN) production, upon recognition of invading viruses. Especially, host sensors recognize viral nucleic acids. Nonetheless, virtually all viruses have evolved potent strategies that preclude host responses within the infected cells. The plasmacytoid dendritic cell (pDC) is an immune cell type known as a robust type I IFN producer in response to viral infection. Evidence suggests that such functionality of the pDCs participates in viral clearance. Nonetheless, their contribution, which is likely complex and varies depending on the pathogen, is still enigmatic for many viruses. pDCs are not permissive to most viral infections, and consistently, recent examples suggest that pDCs respond to immunostimulatory viral RNA transferred via noninfectious and/or noncanonical viral/cellular carriers. Therefore, the pDC response likely bypasses innate signaling blockages induced by virus within infected cells. Importantly, the requirement for cell-cell contact is increasingly recognized as a hallmark of the pDC-mediated antiviral state, triggered by evolutionarily divergent RNA viruses

    Regulation of the Host Antiviral State by Intercellular Communications

    No full text
    International audienceViruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins) and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these "broadcasting" functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic
    corecore