5 research outputs found

    Pemodelan Dispersi Gas dari Cerobong dengan Model Gaussian

    Full text link
    . Pada saat ini ketersediaan data meteorologi profile di Indonesia yang biasanya diukur dengan radiosonde terbatas pada bandara-bandara nasional dan Internasional. Sementara data tersebut diperlukan dalam pemodelan standar seperti AERMOD dan CALPUFF yang memerlukan preparasi data meteorologi yang rumit untuk mensimulasikan dispersi polutan dari cerobong pabrik/PLTU. Ketika model standar tersebut tidak dapat digunakan karena keterbatasan data, maka dapat digantikan dengan model yang lebih sederhana, walaupun akurasinya lebih rendah. Pemodelan dispersi emisi gas berbasis Gaussian-Pasquil cocok digunakan di daerah terpencil karena kesederhanaannya dalam preparasi data meteorologi. Pada model semacam ini hanya data meteorologi permukaan yang diperlukan. Data meteorologi profile tidak diperlukan dalam perhitungan stabilitas atmosfir. Makalah ini memaparkan konstruksi model Gaussian Plume berbasis stabilitas Pasquil . Model dirancang untuk mensimulasikan dispersi gas SO2 yang diemisikan oleh cerobong pabrik/PLTU. Reseptor dan cerobong disetup pada grid Cartesian yang posisinya merunut pada koordinat geografis. Terrain diasumsikan hampir flat dengan ketinggian maksimum 10% dari tinggi cerobong. Data jam-jaman meteorologi permukaan yang diperlukan berupa kecepatan dan arah angin, temperatur dan stabilitas atmosfir. Hasil selanjutnya dapat digambarkan dalam kontur dari rata-rata periode/tahunan, rata-rata kondisi tertinggi (1 jam, 3 jam, 8 jam dan 24 jam)

    Pembuatan Biobriket dari Serasah dan Ampas Kopi Serta Penambahan Limbah Bubuk Kakao sebagai Pengaroma

    Full text link
    Serasah memiliki nilai kalori sebesar 6180,41 kal/g (Naparin dkk, 2019) dan ampas kopi memiliki nilai kalori sebesar 4713 kal/g (Kusuma et al, 2017), merupakan contoh jenis sampah organik yang bisa di manfaatkan sebagai sumber energi alternatif dalam bentuk biobriket. Biobriket adalah kumpulan arang dari biomassa yang telah terkarbonisasi. Selain untuk mendapatkan komposisi yang tepat antara serasah dan ampas kopi yang memenuhi syarat mutu sesuai SNI 01-6235-2000, Penelitian ini juga fokus pada peningkatan mutu biobriket dari segi aroma yang khas dengan penambahan limbah bubuk kakao. Penelitian ini menggunakan desain percobaan faktorial dengan perlakuan komposisi serasah masing-masing 90%,70%, 50% serta komposisi ampas kopi masing-masing10%,30% dan 50%. Hasil penelitian menunjukkan kadar air yakni 6,59% -7,88%, kadar abu yakni 6,81% -8,01%, kadar zat terbang yakni 40,20%-41,88%, kadar karbon terikat yakni 43,57%-44,91% dan nilai kalori yakni 5000,84 cal/g – 5031,78 cal/g. Penerimaan panelis terhadap aroma perlakuan 90% serasah dan 10% ampas kopi ialah 6 40%) suka; 8(53%) cukup suka; 1(7%) tidak suka ; perlakuan 70% serasah dan 30% ampas kopi ialah 7 (47%) suka; 7(46%) cukup suka; 1(7%) tidak suka; perlakuan 50% serasah dan 50% ampas kopi ialah 7(47%) suka; 8(53%) cukup suka. Perlakuan terbaik pada penelitian ini adalah perlakuan 90% serasah dan 10% ampas kopi

    The Internal Factors Affecting Lung Capacity of People Living in Areas Around the Cement Industry, Indonesia

    Full text link
    Background: Some internal factors have both positive and negative effects to people's health, especially those who live in a polluted area. The area around the cement industry is an example of polluted area in which the lung capacity will be harmed.Aim: This research aimed at finding out internal factors affecting lung capacity of people living in the area around the cement industry.Methods: This research used a cross sectional study plan by measuring lung capacity (FEV1 and FVC) of people living in four different locations. The locations were based on wind directions and within 3 km from the cement industry. The study plan was also done by connecting the measurement with other factors, such as age, physical activities, nutrition status and passive smoking or environmental tobacco smoke (ETS).Results: Based on the calculation of lung capacity 241 respondents obtained 123 respondents (51%) had a normal lung capacity, 105 respondents (43.6%) had a restricted lung capacity, 4 respondents (1.7%) had an obstructed lung capacity and 9 respondents (3.7%) had a combination of a restricted and obstructed lung capacity. The age (p=0.977) and physical activities (p=0.087) of respondents had no effect on the lung capacity. However, nutrition status (p=0.011) and passive smoking or ETS (p=0.003) do.Conclusion: The nutrition status and the presence of a passive smoker were the internal factors affecting people's lung capacity, especially for those who live around the cement industry. Thus, in order to avoid the impairment of lung capacity, people need to improve their nutrition and to avoid people smoking around them

    Air Pollution and Lung Capacity of People Living Around the Cement Industry

    Full text link
    Backgrounds: A cement industry is one of anthropogenic sources of air pollution. In polluting the air, the industry creates some dust particles, nitrogen oxide (NO2), sulfur oxide (SO2), and carbon monoxide (CO).Research Purpose: The research aims at finding out the ambient air quality around a cement industry and relating it with the lung capacity of people living around the area.Methodology: This research uses cross sectional studies by measuring the ambient air quality in the morning, noon, and evening in four different settlements within 3 km from the cement industry. The measurement is then correlated with the FEV1 and FVC of lung capacity of people living around the area.Result: Of all four locations, three have ambient air quality (PM2.5 = 109.47 µg/Nm3, TSP = 454.7 µg/Nm3) that surpass the quality standard (PM2.5 = 65 µg/Nm3, TSP = 230 µg/Nm3). Of 241 respondents, the average level of FVC and FEV1 is respectively 1.9352 liter (SD: 0.45578) and 1.7486 liter (SD: 0.43874). Furthermore, the level of PM2.5 in the morning and at noon is respectively p=0.009 and p=0.003; the level of TSP in the morning and at noon is respectively p=0.003 and p=0.01; the level of NO2 in the morning is p=0.006; the level of SO2 in the morning, at noon and in the evening is respectively p=0.000, p=0.022, and p=0.000; and the level of CO in the morning, at noon and in the evening is respectively p=0.003, p=0.015, and p=0.024. Those levels are associated with the level of respondents' FEV1. Moreover, the level of TSP in the morning is p=0.024; the level of SO2 in the morning and in the evening is p=0.007. These levels relate to the level of respondents' FVC
    corecore