239 research outputs found
TiArA: A Virtual Appliance for the Analysis of Tiling Array Data
Genomic tiling arrays have been described in the scientific literature since 2003, yet there is a shortage of user-friendly applications available for their analysis.Tiling Array Analyzer (TiArA) is a software program that provides a user-friendly graphical interface for the background subtraction, normalization, and summarization of data acquired through the Affymetrix tiling array platform. The background signal is empirically measured using a group of nonspecific probes with varying levels of GC content and normalization is performed to enforce a common dynamic range.TiArA is implemented as a standalone program for Linux systems and is available as a cross-platform virtual machine that will run under most modern operating systems using virtualization software such as Sun VirtualBox or VMware. The software is available as a Debian package or a virtual appliance at http://purl.org/NET/tiara
Does the Supreme Court Follow the Economic Returns? A Response to A Macrotheory of the Court
Today, there is a widespread idea that parents need to learn how to carry out their roles as parents. Practices of parental learning operate throughout society. This article deals with one particular practice of parental learning, namely nanny TV, and the way in which ideal parents are constructed through such programmes. The point of departure is SOS family, a series broadcast on Swedish television in 2008. Proceeding from the theorising of governmentality developed in the wake of the work of Michel Foucault, we analyse the parental ideals conveyed in the series, as an example of the way parents are constituted as subjects in the ‘advanced liberal society’ of today. The ideal parent is a subject who, guided by the coach, is constantly endeavouring to achieve a makeover. The objective of this endeavour, however, is self-control, whereby the parents will in the end become their own coaches.
Classification of the Universe of Immune Epitope Literature: Representation and Knowledge Gaps
A significant fraction of the more than 18 million scientific articles currently indexed in the PubMed database are related to immune responses to various agents, including infectious microbes, autoantigens, allergens, transplants, cancer antigens and others. The Immune Epitope Database (IEDB) is an online repository that catalogs immune epitope reactivity data derived from articles listed in the National Library of Medicine PubMed database. The IEDB is maintained and continually updated by monitoring PubMed for new, potentially relevant references.Herein we detail the classification of all epitope-specific literature in over 100 different immunological domains representing Infectious Diseases and Microbes, Autoimmunity, Allergy, Transplantation and Cancer. The relative number of references in each category reflects past and present areas of research on immune reactivities. In addition to describing the overall landscape of data distribution, this particular characterization of the epitope reference data also allows for the exploration of possible correlations with global disease morbidity and mortality data.While in most cases diseases associated with high morbidity and mortality rates were amongst the most studied, a number of high impact diseases such as dengue, Schistosoma, HSV-2, B. pertussis and Chlamydia trachoma, were found to have very little coverage. The data analyzed in this fashion represents the first estimate of how reported immunological data corresponds to disease-related morbidity and mortality, and confirms significant discrepancies in the overall research foci versus disease burden, thus identifying important gaps to be pursued by future research. These findings may also provide a justification for redirecting a portion of research funds into some of the underfunded, critical disease areas
Detection of myxoma viruses encoding a defective M135R gene from clinical cases of myxomatosis; possible implications for the role of the M135R protein as a virulence factor
<p>Abstract</p> <p>Background</p> <p>Myxoma virus is a member of the <it>Poxviridae </it>and causes disease in European rabbits. Laboratory confirmation of the clinical disease, which occurs in the autumn of most years in Denmark, has been achieved previously using antigen ELISA and electron microscopy.</p> <p>Results</p> <p>An unusually large number of clinically suspected cases of myxomatosis were observed in Denmark during 2007. Myxoma virus DNA was detected, using a new real time PCR assay which targets the M029L gene, in over 70% of the clinical samples submitted for laboratory confirmation. Unexpectedly, further analysis revealed that a high proportion of these viral DNA preparations contained a frame-shift mutation within the M135R gene that has previously been identified as a virulence factor. This frame-shift mutation results in expression of a greatly truncated product. The same frame-shift mutation has also been found recently within an avirulent strain of myxoma virus (6918). However, three other frame-shift mutations found in this strain (in the genes M009L, M036L and M148R) were not shared with the Danish viruses but a single nucleotide deletion in the M138R/M139R intergenic region was a common feature.</p> <p>Conclusions</p> <p>It appears that expression of the full-length myxoma virus M135R protein is not required for virulence in rabbits. Hence, the frame-shift mutation in the M135R gene in the nonpathogenic 6918 virus strain is not sufficient to explain the attenuation of this myxoma virus but one/some of the other frame-shift mutations alone or in conjunction with one/some of the thirty two amino acid substitutions must also contribute. The real time PCR assay for myxoma virus is a useful diagnostic tool for laboratory confirmation of suspected cases of myxomatosis.</p
Natural killer (NK) cells from killers to regulators: Distinct features between peripheral blood and decidual NK cells
Natural killer (NK) cells are a key component of innate immunity, particularly crucial during the early phase of immune responses against certain viruses, parasites, and microbial pathogens. The role of NK cell during pregnancy has been vividly discussed over the past years and it is now becoming increasingly clear that NK cells control pregnancy maintenance at several levels. In normal pregnancy, it appears that they provide benefit by properly secreting cytokines, chemokines and angiogenic factors rather than functioning as cytotoxic effector cells. However, as they are endowed with all the cytolytic weapons, they promptly become capable of attacking fetal and maternal tissues during infection and inflammation. © 2007 The Authors Journal compilation 2007 Blackwell Munksgaard
Comparative Analysis of Viral Gene Expression Programs during Poxvirus Infection: A Transcriptional Map of the Vaccinia and Monkeypox Genomes
Poxviruses engage in a complex and intricate dialogue with host cells as part of their strategy for replication. However, relatively little molecular detail is available with which to understand the mechanisms behind this dialogue.We designed a specialized microarray that contains probes specific to all predicted ORFs in the Monkeypox Zaire (MPXV) and Vaccinia Western Reserve (VACV) genomes, as well as >18,000 human genes, and used this tool to characterize MPXV and VACV gene expression responses in vitro during the course of primary infection of human monocytes, primary human fibroblasts and HeLa cells. The two viral transcriptomes show distinct features of temporal regulation and species-specific gene expression, and provide an early foundation for understanding global gene expression responses during poxvirus infection.The results provide a temporal map of the transcriptome of each virus during infection, enabling us to compare viral gene expression across species, and classify expression patterns of previously uncharacterized ORFs
Proteome Sampling by the HLA Class I Antigen Processing Pathway
The peptide repertoire that is presented by the set of HLA class I molecules of an individual is formed by the different players of the antigen processing pathway and the stringent binding environment of the HLA class I molecules. Peptide elution studies have shown that only a subset of the human proteome is sampled by the antigen processing machinery and represented on the cell surface. In our study, we quantified the role of each factor relevant in shaping the HLA class I peptide repertoire by combining peptide elution data, in silico predictions of antigen processing and presentation, and data on gene expression and protein abundance. Our results indicate that gene expression level, protein abundance, and rate of potential binding peptides per protein have a clear impact on sampling probability. Furthermore, once a protein is available for the antigen processing machinery in sufficient amounts, C-terminal processing efficiency and binding affinity to the HLA class I molecule determine the identity of the presented peptides. Having studied the impact of each of these factors separately, we subsequently combined all factors in a logistic regression model in order to quantify their relative impact. This model demonstrated the superiority of protein abundance over gene expression level in predicting sampling probability. Being able to discriminate between sampled and non-sampled proteins to a significant degree, our approach can potentially be used to predict the sampling probability of self proteins and of pathogen-derived proteins, which is of importance for the identification of autoimmune antigens and vaccination targets
HLA Class I Binding 9mer Peptides from Influenza A Virus Induce CD4+ T Cell Responses
BACKGROUND: Identification of human leukocyte antigen class I (HLA-I) restricted cytotoxic T cell (CTL) epitopes from influenza virus is of importance for the development of new effective peptide-based vaccines. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, bioinformatics was used to predict 9mer peptides derived from available influenza A viral proteins with binding affinity for at least one of the 12 HLA-I supertypes. The predicted peptides were then selected in a way that ensured maximal coverage of the available influenza A strains. One hundred and thirty one peptides were synthesized and their binding affinities for the HLA-I supertypes were measured in a biochemical assay. Influenza-specific T cell responses towards the peptides were quantified using IFNgamma ELISPOT assays with peripheral blood mononuclear cells (PBMC) from adult healthy HLA-I typed donors as responder cells. Of the 131 peptides, 21 were found to induce T cell responses in 19 donors. In the ELISPOT assay, five peptides induced responses that could be totally blocked by the pan-specific anti-HLA-I antibody W6/32, whereas 15 peptides induced responses that could be completely blocked in the presence of the pan-specific anti-HLA class II (HLA-II) antibody IVA12. Blocking of HLA-II subtype reactivity revealed that 8 and 6 peptide responses were blocked by anti-HLA-DR and -DP antibodies, respectively. Peptide reactivity of PBMC depleted of CD4(+) or CD8(+) T cells prior to the ELISPOT culture revealed that effectors are either CD4(+) (the majority of reactivities) or CD8(+) T cells, never a mixture of these subsets. Three of the peptides, recognized by CD4(+) T cells showed binding to recombinant DRA1*0101/DRB1*0401 or DRA1*0101/DRB5*0101 molecules in a recently developed biochemical assay. CONCLUSIONS/SIGNIFICANCE: HLA-I binding 9mer influenza virus-derived peptides induce in many cases CD4(+) T cell responses restricted by HLA-II molecules
Plasma ACE2 predicts outcome of COVID-19 in hospitalized patients
AimsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin converting enzyme 2 (ACE2) enabling entrance of the virus into cells and causing the infection termed coronavirus disease of 2019 (COVID-19). Here, we investigate associations between plasma ACE2 and outcome of COVID-19.Methods and resultsThis analysis used data from a large longitudinal study of 306 COVID-19 positive patients and 78 COVID-19 negative patients (MGH Emergency Department COVID-19 Cohort). Comprehensive clinical data were collected on this cohort, including 28-day outcomes. The samples were run on the Olink® Explore 1536 platform which includes measurement of the ACE2 protein. High admission plasma ACE2 in COVID-19 patients was associated with increased maximal illness severity within 28 days with OR = 1.8, 95%-CI: 1.4-2.3 (P ConclusionThis study suggests that measuring plasma ACE2 is potentially valuable in predicting COVID-19 outcomes. Further, ACE2 could be a link between COVID-19 illness severity and its established risk factors hypertension, pre-existing heart disease and pre-existing kidney disease
- …