513 research outputs found

    Theory of quantum dot spin-lasers

    Full text link
    We formulate a model of a semiconductor Quantum Dot laser with injection of spin-polarized electrons. As compared to higher-dimensionality structures, the Quantum-Dot-based active region is known to improve laser properties, including the spin-related ones. The wetting layer, from which carriers are captured into the active region, acts as an intermediate level that strongly influences the lasing operation. The finite capture rate leads to an increase of lasing thresholds, and to saturation of emitted light at higher injection. In spite of these issues, the advantageous threshold reduction, resulting from spin injection, can be preserved. The "spin-filtering" effect, i.e., circularly polarized emission at even modest spin-polarization of injection, remains present as well. Our rate-equations description allows to obtain analytical results and provides transparent guidance for improvement of spin-lasers.Comment: 7 pages, 3 figure

    Energy Dependence of Nuclear Transparency in C(p,2p) Scattering

    Get PDF
    The transparency of carbon for (p,2p) quasi-elastic events was measured at beam energies ranging from 6 to 14.5 GeV at 90 degrees c.m. The four momentum transfer squared q*q ranged from 4.8 to 16.9 (GeV/c)**2. We present the observed energy dependence of the ratio of the carbon to hydrogen cross sections. We also apply a model for the nuclear momentum distribution of carbon to normalize this transparency ratio. We find a sharp rise in transparency as the beam energy is increased to 9 GeV and a reduction to approximately the Glauber level at higher energies.Comment: 4 pages, 2figures, submitted to PR

    Design and performance of a hybrid fast and thermal neutron detector

    Get PDF
    We report the characterization, calibration and performance of a custom-built hybrid detector consisting of BC501A liquid scintillator and BC702 scintillator for the detection of fast and thermal neutrons, respectively. Pulse Shape Discrimination techniques are developed to distinguish events due to gamma-rays, fast and thermal neutrons. Software analysis packages are developed to derive raw neutron energy spectra from measured proton recoil spectra. The validity is demonstrated through the reconstruction of the (AmBe)-Am-241(alpha,n) neutron spectrum. (C) 2017 Elsevier B. V. All rights reserved

    Search for Θ+(1540)\Theta^+(1540) pentaquark in high statistics measurement of γpKˉ0K+n\gamma p \to \bar K^0 K^+ n at CLAS

    Full text link
    The exclusive reaction γpKˉ0K+n\gamma p \to \bar K^0 K^+ n was studied in the photon energy range between 1.6-3.8 GeV searching for evidence of the exotic baryon Θ+(1540)nK+\Theta^+(1540)\to nK^+. The decay to nK+nK^+ requires the assignment of strangeness S=+1S=+1 to any observed resonance. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility corresponding to an integrated luminosity of 70 pb1pb^{-1}. No evidence for the Θ+\Theta^+ pentaquark was found. Upper limits were set on the production cross section as function of center-of-mass angle and nK+nK^+ mass. The 95% CL upper limit on the total cross section for a narrow resonance at 1540 MeV was found to be 0.8 nb.Comment: Submitted to Physical Review Letter

    Light Vector Mesons in the Nuclear Medium

    Full text link
    The light vector mesons (ρ\rho, ω\omega, and ϕ\phi) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the ρ\rho meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to e+ee^{+}e^{-}. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The ρ\rho meson mass spectrum was extracted after the ω\omega and ϕ\phi signals were removed in a nearly model-independent way. Comparisons were made between the ρ\rho mass spectra from the heavy targets (A>2A > 2) with the mass spectrum extracted from the deuterium target. With respect to the ρ\rho-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body effects such as collisional broadening and Fermi motion.Comment: 15 pages, 18 figures, 3 table

    Measurement of the Polarized Structure Function σLT\sigma_{LT^\prime} for p(e,eπ+)np(\vec{e},e'\pi^+)n in the Δ(1232)\Delta(1232) Resonance Region

    Full text link
    The polarized longitudinal-transverse structure function σLT\sigma_{LT^\prime} has been measured using the p(e,eπ+)np(\vec e,e'\pi^+)n reaction in the Δ(1232)\Delta(1232) resonance region at Q2=0.40Q^2=0.40 and 0.65 GeV2^2. No previous σLT\sigma_{LT^\prime} data exist for this reaction channel. The kinematically complete experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an energy of 1.515 GeV. A partial wave analysis of the data shows generally better agreement with recent phenomenological models of pion electroproduction compared to the previously measured π0p\pi^0 p channel. A fit to both π0p\pi^0 p and π+n\pi^+ n channels using a unitary isobar model suggests the unitarized Born terms provide a consistent description of the non-resonant background. The tt-channel pion pole term is important in the π0p\pi^0 p channel through a rescattering correction, which could be model-dependent.Comment: 6 pages, LaTex, 5 eps figures: Submitted to PRC/Brief Reports v2: Updated referenc

    Measurement of Deeply Virtual Compton Scattering with a Polarized Proton Target

    Get PDF
    The longitudinal target-spin asymmetry A_UL for the exclusive electroproduction of high energy photons was measured for the first time in p(e,e'p\gamma). The data have been accumulated at Jefferson Lab with the CLAS spectrometer using 5.7 GeV electrons and a longitudinally polarized NH_3 target. A significant azimuthal angular dependence was observed, resulting from the interference of the Deeply Virtual Compton Scattering and Bethe-Heitler processes. The amplitude of the sin(phi) moment is 0.252 +/- 0.042(stat) +/- 0.020(sys). Theoretical calculations are in good agreement with the magnitude and the kinematic dependence of the target-spin asymmetry, which is sensitive to the generalized parton distributions H and H-tilde.Comment: Modified text slightly, added reference

    Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction

    Full text link
    New cross sections for the reaction epeηpep \to e'\eta p are reported for total center of mass energy WW=1.5--2.3 GeV and invariant squared momentum transfer Q2Q^2=0.13--3.3 GeV2^2. This large kinematic range allows extraction of new information about response functions, photocouplings, and ηN\eta N coupling strengths of baryon resonances. A sharp structure is seen at WW\sim 1.7 GeV. The shape of the differential cross section is indicative of the presence of a PP-wave resonance that persists to high Q2Q^2. Improved values are derived for the photon coupling amplitude for the S11S_{11}(1535) resonance. The new data greatly expands the Q2Q^2 range covered and an interpretation of all data with a consistent parameterization is provided.Comment: 31 pages, 9 figure
    corecore