55 research outputs found

    Using Low-calorie Orange Juice as a Dietary Alternative to Alkali Therapy

    Get PDF
    Purpose: The pursuit of a dietary source to increase urine pH and citrate in stone formers has been ongoing for more than 30 years. Early evidence showed that orange juice (OJ) contains alkali and citrate but high sugar and ascorbic acid content limited the use of OJ as a viable daily source of alkali. Recently, novel low calorie OJs have emerged and could potentially be a better option. Methods: Beverages with high concentrations of alkali citrate and malate were identified using ion chromatography. Two low calorie OJ beverages, in addition to Crystal Light Lemonade (CLLB) were chosen. Healthy volunteers (5 men, 5 women) drank 1L of OJ or CLLB with 1L water daily for 7 days and then completed a 24-hour urinalysis. A washout week was instituted between trial weeks. The study design is a prospective randomized cross over control trial. A paired analysis using comparison of means was used to evaluate low calorie OJ and CLLB. Volunteers had no prior history of kidney stones and maintained a journal with beverage compliance, side effect, and dietary consumption data. Results: Tropicana 50 (TRP50), Kroger low calorie OJ (KLCO) and CLLB were found to have a total alkali content of 56.60, 47.9, and 17.3 mEq/L, respectively, based on ion chromatography. Consumption of all three beverages raised urinary citrate (116.6 [-118 to 373, 177.9 [-3 to 359], 155.6 [-4 to 237] mg/d 95% CI) and urinary pH (0.25 [0.08-0.53], 0.74 [0.41-1.07 p<0.05], 0.25 [0.25-0.64]) respectively, compared to water phase. Based on volunteer journal entries , TRP50 had the most side effects (90% participants) felt to be a result of the artificial sweetener (Stevia ®). Conclusion: Low-calorie orange juice, and to a lesser extent CLLB, have alkali and citrate based on ion chromatography. Daily consumption, by healthy volunteers of KLCO can raise urinary pH

    Association of Urine Findings with Metabolic Syndrome Traits in a Population of Patients with Nephrolithiasis

    Get PDF
    Background The odds of nephrolithiasis increase with more metabolic syndrome (MetS) traits. We evaluated associations of metabolic and dietary factors from urine studies and stone composition with MetS traits in a large cohort of stone-forming patients. Methods Patients .18 years old who were evaluated for stones with 24-hour urine collections between July 2009 and December 2018 had their records reviewed retrospectively. Patient factors, laboratory values, and diagnoses were identified within 6 months of urine collection and stone composition within 1 year. Four groups with none, one, two, and three or four MetS traits (hypertension, obesity, dyslipidemia, and diabetes) were evaluated. Trends across groups were tested using linear contrasts in analysis of variance and analysis of covariance. Results A total of 1473 patients met the inclusion criteria (835 with stone composition). MetS groups were 684 with no traits, 425 with one trait, 211 with two traits, and 153 with three or four traits. There were no differences among groups for urine volume, calcium, or ammonium excretion. There was a significant trend (P,0.001) for more MetS traits being associated with decreasing urine pH, increasing age, calculated dietary protein, urine uric acid (UA), oxalate, citrate, titratable acid phosphate, net acid excretion, and UA supersaturation. The ratio of ammonium to net acid excretion did not differ among the groups. After adjustment for protein intake, the fall in urine pH remained strong, while the upward trend in acid excretion was lost. Calcium oxalate stones were most common, but there was a trend for more UA (P,0.001) and fewer calcium phosphate (P50.09) and calcium oxalate stones (P50.01) with more MetS traits. Conclusions Stone-forming patients with MetS have a defined pattern of metabolic and dietary risk factors that contribute to an increased risk of stone formation, including higher acid excretion, largely the result of greater protein intake, and lower urine pH

    The effect of a diet containing 70% protein from plants on mineral metabolism and musculoskeletal health in chronic kidney disease

    Get PDF
    BACKGROUND: Chronic Kidney Disease (CKD) is associated with alterations in phosphorus excretion, and increases in fibroblast growth factor (FGF23) and parathyroid hormone (PTH). Plant protein-based phytate-bound phosphorus, is less bioavailable than that from animal sources. Our one-week study that was conducted previously showed that a nearly 100% plant protein-based diet benefits mineral metabolism in CKD; however, this diet may not be acceptable to patients. Here we hypothesize that a diet containing 70% protein from plants has similar efficacy and is tolerated by CKD patients. METHODS: Thirteen subjects with CKD 3-4 received an omnivorous diet containing 70% protein from plants for 4 weeks. The primary outcome was change in 24 h urine phosphorus. Secondary outcomes were changes in serum phosphorus, FGF23, PTH, urine sodium excretion, grip strength and fat free mass. Repeated measures analysis of variance (ANOVA) was used to test differences in parameters over the 4 weeks. RESULTS: Mean age of subjects was 54.8 years. Median eGFR was 26 (IQR 14.7) ml/min/1.73 m(2). Over the 4-week period, urine phosphorus significantly decreased by 215 ± 232 mg/day (p < 0.001). No significant changes in serum FGF23, phosphorus or PTH were noted. Urine sodium and titratable acid decreased significantly on the diet. Hand grip strength and fat-free mass did not change. There were two hyperkalemia events both 5.8 mEq/l, corrected by food substitutions. No other adverse events were observed. CONCLUSIONS: A 70% plant protein diet is safe, tolerated, and efficacious in lowering urine phosphorus excretion and may be an alternative to phosphate binders

    Variability in urinary oxalate measurements between six international laboratories

    Get PDF
    Background. Hyperoxaluria is a major risk factor for kidney stone formation. Although urinary oxalate measurement is part of all basic stone risk assessment, there is no standardized method for this measurement. Methods. Urine samples from 24-h urine collection covering a broad range of oxalate concentrations were aliquoted and sent, in duplicates, to six blinded international laboratories for oxalate, sodium and creatinine measurement. In a second set of experiments, ten pairs of native urine and urine spiked with 10 mg/L of oxalate were sent for oxalate measurement. Three laboratories used a commercially available oxalate oxidase kit, two laboratories used a high-performance liquid chromatography (HPLC)-based method and one laboratory used both methods. Results. Intra-laboratory reliability for oxalate measurement expressed as intraclass correlation coefficient (ICC) varied between 0.808 [95% confidence interval (CI): 0.427-0.948] and 0.998 (95% CI: 0.994-1.000), with lower values for HPLC-based methods. Acidification of urine samples prior to analysis led to significantly higher oxalate concentrations. ICC for inter-laboratory reliability varied between 0.745 (95% CI: 0.468-0.890) and 0.986 (95% CI: 0.967-0.995). Recovery of the 10 mg/L oxalate-spiked samples varied between 8.7 ± 2.3 and 10.7 ± 0.5 mg/L. Overall, HPLC-based methods showed more variability compared to the oxalate oxidase kit-based methods. Conclusions. Significant variability was noted in the quantification of urinary oxalate concentration by different laboratories, which may partially explain the differences of hyperoxaluria prevalence reported in the literature. Our data stress the need for a standardization of the method of oxalate measuremen

    Variability in urinary oxalate measurements between six international laboratories

    Get PDF
    Hyperoxaluria is a major risk factor for kidney stone formation. Although urinary oxalate measurement is part of all basic stone risk assessment, there is no standardized method for this measurement

    Emergency department crowding in The Netherlands: managers’ experiences

    Get PDF
    __Abstract__ __Background__ In The Netherlands, the state of emergency department (ED) crowding is unknown. Anecdotal evidence suggests that current ED patients experience a longer length of stay (LOS) compared to some years ago, which is indicative of ED crowding. However, no multicenter studies have been performed to quantify LOS and assess crowding at Dutch EDs. We performed this study to describe the current state of emergency departments in The Netherlands regarding patients’ length of stay and ED nurse managers’ experiences of crowding. __Methods__ A survey was sent to all 94 ED nurse managers in The Netherlands with questions regarding the type of facility, annual ED census, and patients’ LOS. Additional questions included whether crowding was ever a problem at the particular ED, how often it occurred, which time periods had the worst episodes of crowding, and what measures the particular ED had undertaken to improve patient flow. __Results__ Surveys were collected from 63 EDs (67%). Mean annual ED visits were 24,936 (SD ± 9,840); mean LOS for discharged patients was 119 (SD ± 40) min and mean LOS for admitted patients 146 (SD ± 49) min. Consultation delays, laboratory and radiology delays, and hospital bed shortages for patients needing admission were the most cited reasons for crowding. Admitted patients had a longer LOS because of delays in obtaining inpatient beds. Thirty-nine of 57 respondents (68%) reported that crowding occurred several times a week or even daily, mostly between 12:00 and 20:00. Measures taken by hospitals to manage crowding included placing patients in hallways and using a fasttrack with treatment of patients by trained nurse practitioners. __Conclusions__ Despite a relatively short LOS, frequent crowding appears to be a nationwide problem according to Dutch ED nurse managers, with 68% of them reporting that crowding occurred several times a week or even daily. Consultations delays, laboratory and radiology delays, and hospital bed shortage for patients needing admission were believed to be the most important factors contributing to ED crowding

    Vascular Dysfunction in Horses with Endocrinopathic Laminitis

    Get PDF
    Endocrinopathic laminitis (EL) is a vascular condition of the equine hoof resulting in severe lameness with both welfare and economic implications. EL occurs in association with equine metabolic syndrome and equine Cushing's disease. Vascular dysfunction, most commonly due to endothelial dysfunction, is associated with cardiovascular risk in people with metabolic syndrome and Cushing's syndrome. We tested the hypothesis that horses with EL have vascular, specifically endothelial, dysfunction. Healthy horses (n = 6) and horses with EL (n = 6) destined for euthanasia were recruited. We studied vessels from the hooves (laminar artery, laminar vein) and the facial skin (facial skin arteries) by small vessel wire myography. The response to vasoconstrictors phenylephrine (10-9-10-5M) and 5-hydroxytryptamine (5HT; 10-9-10-5M) and the vasodilator acetylcholine (10-9-10-5M) was determined. In comparison with healthy controls, acetylcholine-induced relaxation was dramatically reduced in all intact vessels from horses with EL (% relaxation of healthy laminar arteries 323.5 ± 94.1% v EL 90.8 ± 4.4%, P = 0.01, laminar veins 129.4 ± 14.8% v EL 71.2 ± 4.1%, P = 0.005 and facial skin arteries 182.0 ± 40.7% v EL 91.4 ± 4.5%, P = 0.01). In addition, contractile responses to phenylephrine and 5HT were increased in intact laminar veins from horses with EL compared with healthy horses; these differences were endothelium-independent. Sensitivity to phenylephrine was reduced in intact laminar arteries (P = 0.006) and veins (P = 0.009) from horses with EL. Horses with EL exhibit significant vascular dysfunction in laminar vessels and in facial skin arteries. The systemic nature of the abnormalities suggest this dysfunction is associated with the underlying endocrinopathy and not local changes to the hoof
    corecore