20 research outputs found

    Comparative analysis reveals a role for TGF-β in shaping the residency-related transcriptional signature in tissue-resident memory CD8+ T cells.

    Get PDF
    Tissue-resident CD8+ memory T (TRM) cells are immune cells that permanently reside at tissue sites where they play an important role in providing rapid protection against reinfection. They are not only phenotypically and functionally distinct from their circulating memory counterparts, but also exhibit a unique transcriptional profile. To date, the local tissue signals required for their development and long-term residency are not well understood. So far, the best-characterised tissue-derived signal is transforming growth factor-β (TGF-β), which has been shown to promote the development of these cells within tissues. In this study, we aimed to determine to what extent the transcriptional signatures of TRM cells from multiple tissues reflects TGF-β imprinting. We activated murine CD8+ T cells, stimulated them in vitro by TGF-β, and profiled their transcriptomes using RNA-seq. Upon comparison, we identified a TGF-β-induced signature of differentially expressed genes between TGF-β-stimulated and -unstimulated cells. Next, we linked this in vitro TGF-β-induced signature to a previously identified in vivo TRM-specific gene set and found considerable (>50%) overlap between the two gene sets, thus showing that a substantial part of the TRM signature can be attributed to TGF-β signalling. Finally, gene set enrichment analysis further revealed that the altered gene signature following TGF-β exposure reflected transcriptional signatures found in TRM cells from both epithelial and non-epithelial tissues. In summary, these findings show that TGF-β has a broad footprint in establishing the residency-specific transcriptional profile of TRM cells, which is detectable in TRM cells from diverse tissues. They further suggest that constitutive TGF-β signaling might be involved for their long-term persistence at tissue sites

    Ptpn2 and KLRG1 regulate the generation and function of tissue-resident memory CD8 + T cells in skin

    Get PDF
    Tissue-resident memory T cells (T cells) are key elements of tissue immunity. Here, we investigated the role of the regulator of T cell receptor and cytokine signaling, Ptpn2, in the formation and function of T cells in skin. Ptpn2-deficient CD8 T cells displayed a marked defect in generating CD69 CD103 T cells in response to herpes simplex virus type 1 (HSV-1) skin infection. This was accompanied by a reduction in the proportion of KLRG1 memory precursor cells and a transcriptional bias toward terminal differentiation. Of note, forced expression of KLRG1 was sufficient to impede T cell formation. Normalizing memory precursor frequencies by transferring equal numbers of KLRG1− cells restored T generation, demonstrating that Ptpn2 impacted skin seeding with precursors rather than downstream T cell differentiation. Importantly, Ptpn2-deficient T cells augmented skin autoimmunity but also afforded superior protection from HSV-1 infection. Our results emphasize that KLRG1 repression is required for optimal T cell formation in skin and reveal an important role of Ptpn2 in regulating TRM cell functionality.K. Hochheiser was supported by the German Research Council (grant HO 5417/1-1) and is a Rhian and Paul Brazis Fellow in Translational Melanoma Immunology administered by the Peter MacCallum Cancer Foundation. T. Gebhardt is a Senior Biomedical Research Fellow supported by the Sylvia and Charles Viertel Charitable Foundatio

    Compartmentalization of total and virus-specific tissue-resident memory CD8+ T Cells in human lymphoid organs

    Get PDF
    Disruption of T cell memory during severe immune suppression results in reactivation of chronic viral infections, such as Epstein Barr virus (EBV) and Cytomegalovirus (CMV). How different subsets of memory T cells contribute to the protective immunity against these viruses remains poorly defined. In this study we examined the compartmentalization of virus-specific, tissue resident memory CD8+ T cells in human lymphoid organs. This revealed two distinct populations of memory CD8+ T cells, that were CD69+CD103+ and CD69+CD103-, and were retained within the spleen and tonsils in the absence of recent T cell stimulation. These two types of memory cells were distinct not only in their phenotype and transcriptional profile, but also in their anatomical localization within tonsils and spleen. The EBV-specific, but not CMV-specific, CD8+ memory T cells preferentially accumulated in the tonsils and acquired a phenotype that ensured their retention at the epithelial sites where EBV replicates. In vitro studies revealed that the cytokine IL-15 can potentiate the retention of circulating effector memory CD8+ T cells by down-regulating the expression of sphingosine-1-phosphate receptor, required for T cell exit from tissues, and its transcriptional activator, Kruppel-like factor 2 (KLF2). Within the tonsils the expression of IL-15 was detected in regions where CD8+ T cells localized, further supporting a role for this cytokine in T cell retention. Together this study provides evidence for the compartmentalization of distinct types of resident memory T cells that could contribute to the long-term protection against persisting viral infections

    Comparative analysis reveals a role for TGF-β in shaping the residency-related transcriptional signature in tissue-resident memory CD8 <sup>+</sup> T cells

    Get PDF
    <div><p>Tissue-resident CD8<sup>+</sup> memory T (TRM) cells are immune cells that permanently reside at tissue sites where they play an important role in providing rapid protection against reinfection. They are not only phenotypically and functionally distinct from their circulating memory counterparts, but also exhibit a unique transcriptional profile. To date, the local tissue signals required for their development and long-term residency are not well understood. So far, the best-characterised tissue-derived signal is transforming growth factor-β (TGF-β), which has been shown to promote the development of these cells within tissues. In this study, we aimed to determine to what extent the transcriptional signatures of TRM cells from multiple tissues reflects TGF-β imprinting. We activated murine CD8<sup>+</sup> T cells, stimulated them <i>in vitro</i> by TGF-β, and profiled their transcriptomes using RNA-seq. Upon comparison, we identified a TGF-β-induced signature of differentially expressed genes between TGF-β-stimulated and -unstimulated cells. Next, we linked this <i>in vitro</i> TGF-β-induced signature to a previously identified <i>in vivo</i> TRM-specific gene set and found considerable (>50%) overlap between the two gene sets, thus showing that a substantial part of the TRM signature can be attributed to TGF-β signalling. Finally, gene set enrichment analysis further revealed that the altered gene signature following TGF-β exposure reflected transcriptional signatures found in TRM cells from both epithelial and non-epithelial tissues. In summary, these findings show that TGF-β has a broad footprint in establishing the residency-specific transcriptional profile of TRM cells, which is detectable in TRM cells from diverse tissues. They further suggest that constitutive TGF-β signaling might be involved for their long-term persistence at tissue sites.</p></div

    Immunolyser: A web-based computational pipeline for analysing and mining immunopeptidomic data

    No full text
    Immunopeptidomics has made tremendous contributions to our understanding of antigen processing and presentation, by identifying and quantifying antigenic peptides presented on the cell surface by Major Histocompatibility Complex (MHC) molecules. Large and complex immunopeptidomics datasets can now be routinely generated using Liquid Chromatography-Mass Spectrometry techniques. The analysis of this data – often consisting of multiple replicates/conditions – rarely follows a standard data processing pipeline, hindering the reproducibility and depth of analysis of immunopeptidomic data. Here, we present Immunolyser, an automated pipeline designed to facilitate computational analysis of immunopeptidomic data with a minimal initial setup. Immunolyser brings together routine analyses, including peptide length distribution, peptide motif analysis, sequence clustering, peptide-MHC binding affinity prediction, and source protein analysis. Immunolyser provides a user-friendly and interactive interface via its webserver and is freely available for academic purposes at https://immunolyser.erc.monash.edu/. The open-access source code can be downloaded at our GitHub repository: https://github.com/prmunday/Immunolyser. We anticipate that Immunolyser will serve as a prominent computational pipeline to facilitate effortless and reproducible analysis of immunopeptidomic data

    T-box Transcription Factors Combine with the Cytokines TGF-β and IL-15 to Control Tissue-Resident Memory T Cell Fate

    Get PDF
    SummaryTissue-resident memory T (Trm) cells contribute to local immune protection in non-lymphoid tissues such as skin and mucosa, but little is known about their transcriptional regulation. Here we showed that CD8+CD103+ Trm cells, independent of circulating memory T cells, were sufficient for protection against infection and described molecular elements that were crucial for their development in skin and lung. We demonstrated that the T-box transcription factors (TFs) Eomes and T-bet combined to control CD8+CD103+ Trm cell formation, such that their coordinate downregulation was crucial for TGF-β cytokine signaling. TGF-β signaling, in turn, resulted in reciprocal T-box TF downregulation. However, whereas extinguishment of Eomes was necessary for CD8+CD103+ Trm cell development, residual T-bet expression maintained cell surface interleukin-15 (IL-15) receptor β-chain (CD122) expression and thus IL-15 responsiveness. These findings indicate that the T-box TFs control the two cytokines, TGF-β and IL-15, which are pivotal for CD8+CD103+ Trm cell development and survival

    Tissue-resident regulatory T cells accumulate at human barrier lymphoid organs

    No full text
    Regulatory T cells (Tregs) play a critical role in immune regulation and peripheral tolerance. While different types of Tregs have been identified in both mice and humans, much of our understanding about how these cells maintain immune homeostasis is derived from animal models. In this study, we examined two distinct human lymphoid organs to understand how repeated exposure to infections at the mucosal surface influences the phenotype and tissue localization of Tregs. We show that while Tregs in both tonsils and spleen express a tissue-resident phenotype, they accumulate in greater numbers in tonsils. Tonsillar-resident Tregs exhibit a highly suppressive phenotype with significantly increased expression of CD39, ICOS and CTLA-4 compared with their counterparts in circulation or in the spleen. Functionally, resident Tregs are able effectively to suppress T cell proliferation. We further demonstrate that tonsillar-resident Tregs share key features of T follicular helper cells. Spatial analysis reveals that the vast majority of resident Tregs are localized at the border of the T-zone and B cell follicle, as well as within the lymphocyte pockets enriched with resident memory T cells. Together our findings suggest that resident Tregs are strategically co-localized to maintain immune homeostasis at sites of recurrent inflammation

    Polysialylation controls dendritic cell trafficking by regulating chemokine recognition

    No full text
    The addition of polysialic acid to N- and/or O-linked glycans, referred to as polysialylation, is a rare posttranslational modification that is mainly known to control the developmental plasticity of the nervous system. Here we show that CCR7, the central chemokine receptor controlling immune cell trafficking to secondary lymphatic organs, carries polysialic acid. This modification is essential for the recognition of the CCR7 ligand CCL21. As a consequence, dendritic cell trafficking is abrogated in polysialyltransferase-deficient mice, manifesting as disturbed lymph node homeostasis and unresponsiveness to inflammatory stimuli. Structure-function analysis of chemokine-receptor interactions reveals that CCL21 adopts an autoinhibited conformation, which is released upon interaction with polysialic acid. Thus, we describe a glycosylation-mediated immune cell trafficking disorder and its mechanistic basis

    In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity.

    Get PDF
    According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2-16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8(+) T cell immunity
    corecore