78 research outputs found

    Nanoparticles Titanium Dioxide with Thymus vulgaris extract in preservation and prolong the shelf life of cheese

    Get PDF
    Cheese is considered a perishable food that is affected by microorganisms, and due to the properties of nanomaterials that have antimicrobial activity, they have been used synergistically with plant extracts in inhibiting the action of microorganisms that cause cheese spoilage. In this study, TiO2 (Titanium dioxide) nanoparticles were synthesized using Thymus vulgaris leaves extract (TVLE) . Atomic Force Microscopywas used to investigate Titanium dioxide/ TVLE nanoparticles characterize, which improved the regular spherical shape and granular distribution of nanoparticles with a particle size of 13 nm . The results showed that the minimum inhibitory concentration (MIC) of Titanium dioxide was at a concentration of 4 mg/ml and 80 mg/ml for TVLE, while it was 2 + 20 mg /ml for Titanium dioxide and TVLE .The inhibitory effect increased against Brucella melitensis recorded 12 mm when mixing Titanium dioxide and TVLE, compared with the inhibitory effect of Titanium dioxide, which recorded 10.5 mm and TVLE, with an inhibition diameter 8.1 mm. The effect of using titanium particles and thyme leaves’ extract was studied alone at a concentration of 4 mg/ml and  80 mg/ml and also when mixed in the microbial properties and pH of white soft cheese samples, which were prepared in the laboratory and contaminated with Brucella melitensis at refrigerated storage conditions (5Cº) for 21days. The effect of the synergism relationship between TiO2 / TVLE significantly reduced the total number of microorganisms in samples contaminated and uncontaminated with B. melitensis. Adding titanium dioxide and TVLE at concentrations of 4 and 80 mg/ml contributed significantly to maintaining the pH level during the storage period compared with the control group

    Study of Treg FOXP3 in childhood bronchial asthma in relation to corticosteroid therapy

    Get PDF
    Background: T cells are considered the main cells responsible for production of suppressive cytokines, and play a key role in balancing the immune responses to maintain the peripheral tolerance against allergens. Objective: The present study investigates T regulatory (Treg) forkheadwinged helix protein 3 FOXP3 expression in childhood asthma and its relation to corticosteroid therapy. Methods: In this case control study, Treg FOXP3 was measured in blood of 60 children using real time polymerase chain reaction (RT-PCR) technique. Two asthmatic groups were included, one on corticosteroid therapy (20 patients) and the other not on corticosteroid treatment (20 patients). They were compared to 20 healthy children as controls. Results: FOXP3 concentration was significantly elevated in asthmatic patients (90 ± 77.4) compared to healthy children (12.844 ± 10.6) (p= 0.000). FOXP3 was significantly more elevated in asthmatics on corticosteroids (161.158 ± 63.9) than steroid naive asthmatics (36.038 ± 23.4) (p=0.000). Levels of Treg FOXP3 in asthmatics with inhaled corticosteroids (mean 151.16 ± 53.79) were almost similar to FOXP3 in asthmatics with systemic corticosteroids (161.49±72.5) (p>0.05). FOXP3 levels did not differ with smoking, asthma severity or disease control and did not correlate with age, FEV1, blood lymphocytes percentage or eosinophils percentage. Conclusion: Asthmatics have increased expression of FOXP3, and corticosteroid therapy –whether oral or inhaled - enhances FOXP3 expression.Keywords: FOXP3, Treg, Corticosteroids, Bronchial asthma, Transcription factors, CytokinesEgypt J Pediatr Allergy Immunol 2012;10(1):39-43

    Computational mechanistic study of the unimolecular dissociation of ethyl hydroperoxide and its bimolecular reactions with atmospheric species

    Get PDF
    A detailed computational study of the atmospheric reaction of the simplest Criegee intermediate CH2OO with methane has been performed using the density functional theory (DFT) method and high-level calculations. Solvation models were utilized to address the effect of water molecules on prominent reaction steps and their associated energies. The structures of all proposed mechanisms were optimized using B3LYP functional with several basis sets: 6-31G(d), 6-31G (2df,p), 6-311++G(3df,3pd) and at M06-2X/6-31G(d) and APFD/6-31G(d) levels of theory. Furthermore, all structures were optimized at the B3LYP/6-311++G(3df,3pd) level of theory. The intrinsic reaction coordinate (IRC) analysis was performed for characterizing the transition states on the potential energy surfaces. Fifteen different mechanistic pathways were studied for the reaction of Criegee intermediate with methane. Both thermodynamic functions (ΔH and ΔG), and activation parameters (activation energies Ea, enthalpies of activation ΔHǂ, and Gibbs energies of activation ΔGǂ) were calculated for all pathways investigated. The individual mechanisms for pathways A1, A2, B1, and B2, comprise two key steps: (i) the formation of ethyl hydroperoxide (EHP) accompanying with the hydrogen transfer from the alkanes to the terminal oxygen atom of CIs, and (ii) a following unimolecular dissociation of EHP. Pathways from C1 → H1 involve the bimolecular reaction of EHP with different atmospheric species. The photochemical reaction of methane with EHP (pathway E1) was found to be the most plausible reaction mechanism, exhibiting an overall activation energy of 7 kJ mol−1, which was estimated in vacuum at the B3LYP/6-311++G(3df,3pd) level of theory. All of the reactions were found to be strongly exothermic, expect the case of the sulfur dioxide-involved pathway that is predicted to be endothermic. The solvent effect plays an important role in the reaction of EHP with ammonia (pathway F1). Compared with the gas phase reaction, the overall activation energy for the solution phase reaction is decreased by 162 and 140 kJ mol−1 according to calculations done with the SMD and PCM solvation models, respectively

    Case report: the genetic diagnosis of duchenne muscular dystrophy in the Middle East

    Get PDF
    The timely and accurate genetic diagnosis of Duchenne muscular dystrophy (DMD) enables prompt initiation of disease management and genetic counseling and optimal patient care. Despite the existence of best practice guidelines for the diagnosis of DMD, implementation of these recommendations in different parts of the world is challenging. Here, we present 4 unique case studies which illustrate the different diagnostic pathways of patients with DMD in Middle Eastern countries and highlight region-specific challenges to achieving timely and accurate genetic diagnosis of DMD. A lack of disease awareness and consequential failure to recognize the signs and symptoms of DMD significantly contributed to the delayed diagnoses of these patients. Additional challenges included limited available funding for genetic testing and a lack of local specialist and genetic testing centers, causing patients and their families to travel vast distances for appointments in some countries. Earlier and more accurate genetic diagnosis of DMD in this region would allow patients to benefit from effective disease management, leading to improvements in health-related quality of life.Functional Genomics of Muscle, Nerve and Brain Disorder

    Effects of prebiotic (lactoferrin) and diclazuril on broiler chickens experimentally infected with Eimeria tenella

    Get PDF
    IntroductionAvian coccidiosis presents a significant challenge to the poultry industry in Egypt, highlighting the urgent need for validating new drug targets offering promising prospects for the development of advanced anticoccidials. Although numerous reports highlight the activity of lactoferrin (LF) against various microorganisms, its potential against Eimeria has not been explored. The present study evaluated the potential anticoccidial effect of LF and diclazuril in broiler chickens experimentally infected with Eimeria tenella.MethodsA total of 100 one-day-old broiler chicks were divided into five equal groups (20 each) as follows: Group 1 (G1) served as the normal healthy control group, Group 2 (G2) consisted of chickens infected with 1 × 105 sporulated E. tenella oocysts at 14 days of age, Group 3 (G3) comprised infected chickens treated with diclazuril (0.5 mL/L in drinking water) for 3 days successively, Group 4 (G4) included infected chickens treated with LF (at a dose of 250 mg/kg of diet) from one day of age until the end of the study, and Group 5 (G5) comprised infected chickens treated with both LF and diclazuril.ResultsThe positive control group (G2) experienced significant reductions in body weight (BW), BW gain, serum glucose, lipase, amylase, total antioxidant capacity, several hematological indices, and total proteins, along with alterations in various antioxidant enzymes. Conversely, serum levels of aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Alkaline phosphatases (ALP), urea, creatinine, nitric oxide, mean corpuscular volume (MCV), White blood cells (WBCs), heterophils, alpha 2, beta 1, and liver contents of malondialdehyde were elevated in this group. Moreover, higher oocyst counts and lesion scores, along with histopathological alterations, were observed in G2. Remarkably, treatment with diclazuril and/or LF demonstrated potent antioxidant and anticoccidial effects, resulting in reduced shedding of oocysts, lesion scores, and lymphocytic infiltrates in the cecum. Additionally, these treatments improved the antioxidant and immune systems in chickens and restored all histopathological changes reported in the infected non-treated group (G2).ConclusionThis study offers novel perspectives on the potential anticoccidial effects of the combination of LF and diclazuril in broiler chickens infected with E. tenella, highlighting the potential synergistic actions of LF in treating poultry coccidiosis

    Quantitative expression of oestrogen receptor in breast cancer: Clinical and molecular significance

    Get PDF
    BackgroundOestrogen receptor (ER) positive breast cancer (BC) patients are eligible for endocrine therapy (ET), regardless of ER immunohistochemical expression level. There is a wide spectrum of ER expression and the response to ET is not uniform. This study aimed to assess the clinical and molecular consequences of ER heterogeneity with respect to ET-response.MethodsER expression, categorised by percentage and staining intensity in a large BC cohort (n = 7559) was correlated with clinicopathological parameters and patient ET response. The Cancer Genome Atlas Data BC cohort (n = 1047) was stratified by ER expression and transcriptomic analysis completed to better understand the molecular basis of ER heterogeneity.ResultsThe quantitative proportional increase in ER expression was positively associated with favourable prognostic parameters. Tumours with 1–9% ER expression were characteristically similar to ER-negative (<1%) tumours. Maximum ET-response was observed in tumours with 100% ER expression, with responses significantly different to tumours exhibiting ER at < 100% and significantly decreased survival rates were observed in tumours with 50% and 10% of ER expression. The Histochemical-score (H-score), which considers both staining intensity and percentage, added significant prognostic value over ER percentage alone with significant outcome differences observed at H-scores of 30, 100 and 200. There was a positive correlation between ER expression and ESR1 mRNA expression and expression of ER-regulated genes. Pathway analysis identified differential expression in key cancer-related pathways in different ER-positive groups.ConclusionET-response is statistically proportionally related to ER expression with significant differences observed at 10%, 50% and 100%. The H-score adds prognostic and predictive information
    • …
    corecore