4 research outputs found

    Water-loss (intracellular) dehydration assessed using urinary tests, how well do they work? Diagnostic accuracy in older people

    Get PDF
    Background: Water-loss dehydration (hypertonic, hyperosmotic or intra-cellular dehydration) is due to insufficient fluid intake and distinct from hypovolemia due to excess fluid losses. It is associated with poor health outcomes such as disability and mortality in older people. Urine specific gravity (USG), color and urine osmolality have been widely advocated for screening for dehydration in older adults. Objective: To assess the diagnostic accuracy of urinary measures to screen for water-loss dehydration in older people.Design: This was a diagnostic accuracy study of people aged ≥65years taking part in the Dehydration Recognition In our Elders (DRIE, living in long-term care) or Dietary Strategies for Healthy Ageing in Europe (NU-AGE, living in the community) studies. The reference standard was serum osmolality, index tests included USG, urine color, osmolality, cloudiness, additional dipstick measures, ability to provide a urine sample, and volume of a random urine sample. Minimum useful diagnostic accuracy was set at sensitivity and specificity ≥70% or receiver operating characteristics plot area under the curve ≥0.70. Results: DRIE participants (67% women, mean age 86 years, n=162) had more limited cognitive and functional abilities than NU-AGE participants (64% women, mean age 70 years, n=151). 19% of DRIE and 22% of NU-AGE participants were dehydrated (serum osmolality >300mOsm/kg). Neither USG nor any other potential urinary tests were usefully diagnostic for water-loss dehydration. Conclusions: Although USG, urine color and urinary osmolality have been widely advocated for screening for dehydration in older adults, we show in the largest study to date that their diagnostic accuracy is too low to be useful and these measures should not be used to indicate hydration status in older people (either alone or as part of a wider tranche of tests). There is a need to develop simple, inexpensive and non-invasive tools for the assessment of dehydration in older people

    The superior performance of silica gel supported nano zero-valent iron for simultaneous removal of Cr (VI)

    No full text
    Abstract Pure nano zero-valent iron (NZVI) was fabricated under optimum conditions based on material production yield and its efficiency toward acid blue dye-25 decolorization. The optimum prepared bare NZVI was immobilized with two different supports of silica and starch to fabricate their composites nanomaterials. The three different prepared zero-valent iron-based nanomaterials were evaluated for removal of hexavalent chromium (Cr(VI)). The silica-modified NZVI recorded the most outstanding removal efficiency for Cr(VI) compared to pristine NZVI and starch-modified NZVI. The removal efficiency of Cr(VI) was improved under acidic conditions and decreased with raising the initial concentration of Cr(VI). The co-existence of cations, anions, and humic acid reduced Cr(VI) removal efficiency. The removal efficiency was ameliorated from 96.8% to 100% after adding 0.75 mM of H2O2. The reusability of silica-modified NZVI for six cycles of Cr(VI) removal was investigated and the removal mechanism was suggested as the physicochemical process. Based on Langmuir isotherm, the maximal Cr(VI) removal capacity attained 149.25 mg/g. Kinetic and equilibrium data were efficiently fitted using the pseudo-second-order and Langmuir models, respectively confirming the proposed mechanism. Diffusion models affirmed that the adsorption rate was governed by intraparticle diffusion. Adsorption thermodynamic study suggested the spontaneity and exothermic nature of the adsorption process. This study sheds light on the technology that has potential for magnetic separation and long-term use for effective removal of emerging water pollutants

    Species DNA-based identification for detection of processed meat adulteration: is there a role of human short tandem repeats (STRs)?

    No full text
    Abstract Background Species identification in the food of animal origin is an essential aspect of its control. Food safety and environmental forensic professionals in various countries are becoming increasingly concerned about the number of serious food offences being carried out by organised criminals. Adulteration in food especially meat is relevant for legal, economic, religious and public health reasons. This study aimed to determine potential adulteration and/or contamination with the donkey, chicken or even human tissues or cells in different marketed red meat products. The products tested were the uncooked beef burger, sausage, kofta and luncheon, manually processed or were of different commercial brands with variable prices, through a PCR-based method. A total of 40 different commercial meat product samples were randomly collected from restaurants, butchers, hypermarkets and local shops. The 12S rRNA region within the mitochondrial DNA was amplified with species-specific primers for identification of two suspected animal species (donkey and chicken) and two nuclear DNA STRs (short tandem repeats) loci, TPOX and D18S51 for excluding human origin of adulteration or contamination. Results The total beef samples analysed showed 87.5% adulteration and mislabelling with one or more species. They were mostly mixed with chicken meat or their by-products (72.5%) followed by donkey (12.5%) and lastly human (2.5%) that was detected in a manually prepared kofta sample. Conclusion The used non-human species-specific PCR along with the first reported use of human hypervariable STRs proved valuable and straightforward techniques for species authentication of meat products
    corecore