16 research outputs found

    Nano-to-Submicron Hydroxyapatite Coatings for Magnesium-based Bioresorbable Implants - Deposition, Characterization, Degradation, Mechanical Properties, and Cytocompatibility.

    Get PDF
    Magnesium (Mg) and its alloys have shown attractive biocompatibility and mechanical strength for medical applications, but low corrosion resistance of Mg in physiological environment limits its broad clinical translation. Hydroxyapatite (HA) nanoparticles (nHA) are promising coating materials for decreasing degradation rates and prolonging mechanical strength of Mg-based implants while enhancing bone healing due to their osteoconductivity and osteoinductivity. Conformal HA coatings with nano-to-submicron structures, namely nHA and mHA coatings, were deposited successfully on Mg plates and rods using a transonic particle acceleration (TPA) process under two different conditions, characterized, and investigated for their effects on Mg degradation in vitro. The nHA and mHA coatings enhanced corrosion resistance of Mg and retained 86-90% of ultimate compressive strength after in vitro immersion in rSBF for 6 weeks, much greater than non-coated Mg that only retained 66% of strength. Mg-based rods with or without coatings showed slower degradation than the respective Mg-based plates in rSBF after 6 weeks, likely because of the greater surface-to-volume ratio of Mg plates than Mg rods. This indicates that Mg-based plate and screw devices may undergo different degradation even when they have the same coatings and are implanted at the same or similar anatomical locations. Therefore, in addition to locations of implantation, the geometry, dimension, surface area, volume, and mass of Mg-based implants and devices should be carefully considered in their design and processing to ensure that they not only provide adequate structural and mechanical stability for bone fixation, but also support the functions of bone cells, as clinically required for craniomaxillofacial (CMF) and orthopedic implants. When the nHA and mHA coated Mg and non-coated Mg plates were cultured with bone marrow derived mesenchymal stem cells (BMSCs) using the in vitro direct culture method, greater cell adhesion densities were observed under indirect contact conditions than that under direct contact conditions for the nHA and mHA coated Mg. In comparison with non-coated Mg, the nHA and mHA coated Mg reduced BMSC adhesion densities directly on the surface, but increased the average BMSC adhesion densities under indirect contact. Further long-term studies in vitro and in vivo are necessary to elucidate the effects of nHA and mHA coatings on cell functions and tissue healing

    Features of Three- and Four-Part Proximal Humeral Fractures and Outcome of Internal Fixation Using the Philos® Locking Plate

    Get PDF
    Background: Proximal humeral fractures are among common types of fractures and remain a challenging issue for surgical management. This study aimed to assess the clinical outcomes and complication rates of three- vs. four-part proximal humeral fractures, treated with internal fixation using the Philos® plate.Material and Methods: In this cohort study, a total of 30 consecutive patients with three-part or four-part proximal humeral fractures based on the Neer classification were included. Surgical treatment was performed with open reduction and internal fixation using the Philos® plate. The constant score was evaluated 6 months later in follow-up. The P<0.05 was considered significant.Results: Four-part fractures were mainly caused by trauma from above, while insults of opposite direction were responsible for more than half of 3 part fractures (P=0.01). Open fractures were only observed in patients with a four-part fracture (P=0.018). No significant differences were noticed regarding gender, cause, and side of the fracture.The presence of other fractures, fracture of the implant, reduction loss, avascular necrosis (AVN) of humerus head, rotator cuff injury, and revision surgery were significantly higher in patients with four-part fractures.The mean constant score was 81.40±11.61 and 65.09±16.09 for three-part and four-part fractures, respectively (P=0.006).Conclusion: Open reduction and internal fixation with Philos® plate yield acceptable results in both types of fractures, however, the prognosis of this intervention is poorer four-part fractures

    Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells

    No full text
    This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium-yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium-yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200-500 nm in the long axis and 100-300 nm in the short axis, and a Ca/P atomic ratio of 1.5-1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor

    The β‐domain of streptokinase affects several functionalities, including specific/proteolytic activity kinetics

    No full text
    Streptokinase (SK) is a plasminogen activator which converts inactive plasminogen (Pg) to active plasmin (Pm), which cleaves fibrin clots. SK secreted by groups A, C, and G Streptococcus (SKA/SKC/SKG) is composed of three domains: SKα, SKβ and SKγ. Previous domain‐swapping studies between SK1/SK2b‐cluster variants revealed that SKβ plays a major role in the activation of human Pg. Here, we carried out domain‐swapping between skcg‐SK/SK2‐cluster variants to determine the involvement of SKβ in several SK functionalities, including specific/proteolytic activity kinetics, fibrinogen‐bound Pg activation and α2‐antiplasmin resistance. Our results indicate that SKβ has a minor to determining role in these diverse functionalities for skcg‐SK and SK2b variants, which might potentially be accompanied by few critical residues acting as hot spots. Our findings enhance our understanding of the roles of SKβ and hot spots in different functional characteristics of SK clusters and may aid in the engineering of fibrin‐specific variants of SK for breaking down blood clots with potentially higher efficacy and safety

    The association between PD-1 gene polymorphisms and susceptibility to multiple sclerosis

    No full text
    AbstractProgrammed cell death 1 (PD-1) is an immune checkpoint and has been reported to be associated with several autoimmune diseases. We aimed to investigate the association between human PD-1 gene (PDCD1) polymorphisms and multiple sclerosis (MS). This case-control study was conducted on 229 MS patients and 246 healthy controls. Genotyping of rs36084323 (PD-1.1 G/A), rs11568821 (PD-1.3 G/A) and rs2227981 (PD-1.5 C/T) polymorphisms was performed by PCR-RFLP technique. The frequency difference of PD-1.1 genotypes and alleles (−536 G/A) between patients and healthy controls was not significant. Regarding PD-1.3, the AA + AG genotype was found to be relatively higher in the control group. Concerning PD-1.5 (+7785 C/T), the frequency of T allele carriers (TT + CT) was relatively higher in MS patients, which was marginally insignificant (p = .07). PD-1 gene polymorphisms may be associated with MS; however, accurate conclusions require further studies with a larger number of samples

    Genetics and immunodysfunction underlying Behçet’s disease and immunomodulant treatment approaches

    No full text
    Behçet’s disease (BD) is a chronic autoimmune condition primarily prevalent in populations along the Mediterranean Sea. The exact etiology of BD has not been fully explained yet, but the disease occurrence is associated with a genetic factor, human leukocyte antigen (HLA)-B51 antigen. Among the various immunodysfunctions that are found in BD, patients are increased neutrophil motility and superoxide production, as well as elevated production of tumor necrosis factor (TNF)-α and decreased production of interleukin (IL)-10. Elevated levels of inflammatory cytokines like IL-1 and IL-17 in BD have been found associated with aberrant expression of microRNA. Gene polymorphisms in BD patients have been observed in molecules involved in responses to pathogens that can ultimately modulate the host antimicrobial response. Moreover, several single nucleotide polymorphisms (SNPs) have been reported in genes encoding chemokines and adhesion molecules; many of these changes manifest as increases in vascular inflammation and vascular damage. Lastly, genetic and epigenetic changes have been suggested as involved in the pathogenesis of BD. Modifications in DNA methylation have been found in BD patient monocytes and lymphocytes, leading to adverse function of these cells. This review presents a comprehensive compilation of the literature with regard to the immunodysfunction underlying BD, as well as of the genetics, newly described clinical specifications and novel treatment strategies using immunomodulants based on the current understanding of BD
    corecore