88 research outputs found

    Annealed Silver-Island Films for Applications in Metal-Enhanced Fluorescence: Interpretation in Terms of Radiating Plasmons

    Get PDF
    The effects of thermally annealed silver island films have been studied with regard to their potential applicability in applications of metal-enhanced fluorescence, an emerging tool in nano-biotechnology. Silver island films were thermally annealed between 75 and 250°C for several hours. As a function of both time and annealing temperature, the surface plasmon band at ≈420 nm both diminished and was blue shifted. These changes in plasmon resonance have been characterized using both absorption measurements, as well as topographically using Atomic Force Microscopy. Subsequently, the net changes in plasmon absorption are interpreted as the silver island films becoming spherical and growing in height, as well as an increased spacing between the particles. Interestingly, when the annealed surfaces are coated with a fluorescein-labeled protein, significant enhancements in fluorescence are osbserved, scaling with annealing temperature and time. These observations strongly support our recent hypothesis that the extent of metal-enhanced fluorescence is due to the ability of surface plasmons to radiate coupled fluorophore fluorescence. Given that the extinction spectrum of the silvered films is comprised of both an absorption and scattering component, and that these components are proportional to the diameter cubed and to the sixth power, respectively, then larger structures are expected to have a greater scattering contribution to their extinction spectrum and, therefore, more efficiently radiate coupled fluorophore emission. Subsequently, we have been able to correlate our increases in fluorescence emission with an increased particle size, providing strong experiment evidence for our recently reported metal-enhanced fluorescence, facilitated by radiating plasmons hypothesis

    Characterization of human platelet binding of recombinant T cell receptor ligand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recombinant T cell receptor ligands (RTLs) are bio-engineered molecules that may serve as novel therapeutic agents for the treatment of neuroinflammatory conditions such as multiple sclerosis (MS). RTLs contain membrane distal α1 plus β1 domains of class II major histocompatibility complex linked covalently to specific peptides that can be used to regulate T cell responses and inhibit experimental autoimmune encephalomyelitis (EAE). The mechanisms by which RTLs impede local recruitment and retention of inflammatory cells in the CNS, however, are not completely understood.</p> <p>Methods</p> <p>We have recently shown that RTLs bind strongly to B cells, macrophages, and dendritic cells, but not to T cells, in an antigenic-independent manner, raising the question whether peripheral blood cells express a distinct RTL-receptor. Our study was designed to characterize the molecular mechanisms by which RTLs bind human blood platelets, and the ability of RTL to modulate platelet function.</p> <p>Results</p> <p>Our data demonstrate that human blood platelets support binding of RTL. Immobilized RTL initiated platelet intracellular calcium mobilization and lamellipodia formation through a pathway dependent upon Src and PI3 kinases signaling. The presence of RTL in solution reduced platelet aggregation by collagen, while treatment of whole blood with RTL prolonged occlusive thrombus formation on collagen.</p> <p>Conclusions</p> <p>Platelets, well-known regulators of hemostasis and thrombosis, have been implicated in playing a major role in inflammation and immunity. This study provides the first evidence that blood platelets express a functional RTL-receptor with a putative role in modulating pathways of neuroinflammation.</p

    Acute ischaemic stroke associated with SARS-CoV-2 infection in North America

    Get PDF
    BACKGROUND: To analyse the clinical characteristics of COVID-19 with acute ischaemic stroke (AIS) and identify factors predicting functional outcome. METHODS: Multicentre retrospective cohort study of COVID-19 patients with AIS who presented to 30 stroke centres in the USA and Canada between 14 March and 30 August 2020. The primary endpoint was poor functional outcome, defined as a modified Rankin Scale (mRS) of 5 or 6 at discharge. Secondary endpoints include favourable outcome (mRS ≤2) and mortality at discharge, ordinal mRS (shift analysis), symptomatic intracranial haemorrhage (sICH) and occurrence of in-hospital complications. RESULTS: A total of 216 COVID-19 patients with AIS were included. 68.1% (147/216) were older than 60 years, while 31.9% (69/216) were younger. Median [IQR] National Institutes of Health Stroke Scale (NIHSS) at presentation was 12.5 (15.8), and 44.2% (87/197) presented with large vessel occlusion (LVO). Approximately 51.3% (98/191) of the patients had poor outcomes with an observed mortality rate of 39.1% (81/207). Age \u3e60 years (aOR: 5.11, 95% CI 2.08 to 12.56, p\u3c0.001), diabetes mellitus (aOR: 2.66, 95% CI 1.16 to 6.09, p=0.021), higher NIHSS at admission (aOR: 1.08, 95% CI 1.02 to 1.14, p=0.006), LVO (aOR: 2.45, 95% CI 1.04 to 5.78, p=0.042), and higher NLR level (aOR: 1.06, 95% CI 1.01 to 1.11, p=0.028) were significantly associated with poor functional outcome. CONCLUSION: There is relationship between COVID-19-associated AIS and severe disability or death. We identified several factors which predict worse outcomes, and these outcomes were more frequent compared to global averages. We found that elevated neutrophil-to-lymphocyte ratio, rather than D-Dimer, predicted both morbidity and mortality

    Useful pharmacodynamic endpoints in children: selection, measurement, and next steps.

    Get PDF
    Pharmacodynamic (PD) endpoints are essential for establishing the benefit-to-risk ratio for therapeutic interventions in children and neonates. This article discusses the selection of an appropriate measure of response, the PD endpoint, which is a critical methodological step in designing pediatric efficacy and safety studies. We provide an overview of existing guidance on the choice of PD endpoints in pediatric clinical research. We identified several considerations relevant to the selection and measurement of PD endpoints in pediatric clinical trials, including the use of biomarkers, modeling, compliance, scoring systems, and validated measurement tools. To be useful, PD endpoints in children need to be clinically relevant, responsive to both treatment and/or disease progression, reproducible, and reliable. In most pediatric disease areas, this requires significant validation efforts. We propose a minimal set of criteria for useful PD endpoint selection and measurement. We conclude that, given the current heterogeneity of pediatric PD endpoint definitions and measurements, both across and within defined disease areas, there is an acute need for internationally agreed, validated, and condition-specific pediatric PD endpoints that consider the needs of all stakeholders, including healthcare providers, policy makers, patients, and families.Pediatric Research advance online publication, 11 April 2018; doi:10.1038/pr.2018.38

    The neurogenic bladder: medical treatment

    Get PDF
    Neurogenic bladder sphincter dysfunction (NBSD) can cause severe and irreversible renal damage and bladder-wall destruction years before incontinence becomes an issue. Therefore, the first step in adequate management is to recognize early the bladder at risk for upper- and lower-tract deterioration and to start adequate medical treatment proactively. Clean intermittent catheterization combined with anticholinergics (oral or intravesical) is the standard therapy for NBSD. Early institution of such treatment can prevent both renal damage and secondary bladder-wall changes, thereby potentially improving long-term outcomes. In children with severe side effects or with insufficient suppression of detrusor overactivity despite maximal dosage of oral oxybutynin, intravesical instillation is an effective alternative. Intravesical instillation eliminates systemic side effects by reducing the first-pass metabolism and, compared with oral oxybutynin, intravesical oxybutynin is a more potent and long-acting detrusor suppressor. There is growing evidence that with early adequate treatment, kidneys are saved and normal bladder growth can be achieved in children so they will no longer need surgical bladder augmentation to achieve safe urinary continence in adolescence and adulthood

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore