18 research outputs found

    Two different evolutionary lines of filamentous phages in Ralstonia solanacearum: their effects on bacterial virulence

    Get PDF
    The integration and excision of various filamentous phage genomes into and out of their host chromosomes occurs by site-specific recombination. The mechanisms proposed for these events include reactions mediated by phage-encoded recombinases and host recombination systems. Site-specific integration of filamentous phages plays a vital role in a variety of biological functions of the host, such as phase variation of certain pathogenic bacterial virulence factors. The importance of these filamentous phages in bacterial evolution is rapidly increasing with the discovery of new phages that are involved in pathogenicity. Studies of the diversity of two different filamentous phages infecting the phytopathogen Ralstonia solanacearum provide us with novel insights into the dynamics of phage genomes, biological roles of prophages, and the regulation and importance of phage–host interactions

    Xanthomonas citri jumbo phage XacN1 exhibits a wide host range and high complement of tRNA genes

    Get PDF
    Xanthomonas virus (phage) XacN1 is a novel jumbo myovirus infecting Xanthomonas citri, the causative agent of Asian citrus canker. Its linear 384,670 bp double-stranded DNA genome encodes 592 proteins and presents the longest (66 kbp) direct terminal repeats (DTRs) among sequenced viral genomes. The DTRs harbor 56 tRNA genes, which correspond to all 20 amino acids and represent the largest number of tRNA genes reported in a viral genome. Codon usage analysis revealed a propensity for the phage encoded tRNAs to target codons that are highly used by the phage but less frequently by its host. The existence of these tRNA genes and seven additional translation-related genes as well as a chaperonin gene found in the XacN1 genome suggests a relative independence of phage replication on host molecular machinery, leading to a prediction of a wide host range for this jumbo phage. We confirmed the prediction by showing a wider host range of XacN1 than other X. citri phages in an infection test against a panel of host strains. Phylogenetic analyses revealed a clade of phages composed of XacN1 and ten other jumbo phages, indicating an evolutionary stable large genome size for this group of phages.This research was supported by JSPS KAKENHI (Grant nos. 24380049, 15H04477, 16KT0020) as well as a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Science, Sports, and Technology (MEXT) of Japan (No. 16H06429, 16K21723, and 16H06437). Computational work was completed at the SuperComputer System, Institute for Chemical Research, Kyoto University

    Influence of some chemicals and solvents on the lytic activity and the adsorption of bacteriophages on Pectobacterium carotovoroum Subsp. carotovorum

    Get PDF
    Recently, bacteriophages have been used to control hazardous bacterial soft rot disease on crops. However, agricultural plants are frequently treated with different chemicals (fertilizers, pesticides and solvents), so we assessed the effect of some commonly used chemicals and solvents on the lytic activity of tested bacteriophages and their adsorption potential. This study reports the isolation of three specific phages against the Pectobacterium carotovorum subsp. carotovorum DSM 30170 strain, designated as ?PC1, ?PC2 and ?PC3, then partially characterized using electron microscopy and genome size. The 3 isolated phages belong to the Myoviridae family. The results obtained were based on the plaque-forming unit observed after incubation. By increasing the chemical concentrations (from 0.1 to 0.5 mM), calcium chloride (CaCl2) and potassium chloride (KCl) showed a significant increase in the lytic activity of the phages. Copper sulphate (CuSO4) and copper chloride (CuCl2) showed a substantial decrease in the activity of ?PC3; however, such a decrease was insignificant for ?PC1 and ?PC2. By increasing the solvent concentrations (from 30 % v/v to 70 % v/v), propanol, ethanol and methanol showed a significant decrease in the count of the three isolated phages, ?PC1, ?PC2 and ?PC3, compared to the control. Chloroform was the only solvent that did not reduce the phage titer. Our findings offer significant information for developing a strategy to combat the P. carotovorum subsp. carotovorum caused bacterial soft rot disease. avoiding copper compounds and alcoholic solvents such as propanol, ethanol and methanol in plots where phages are applied seems advisable

    Bacteriophages to control multi-drug resistant enterococcus faecalis infection of dental root canals

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Phage therapy is an alternative treatment to antibiotics that can overcome multi-drug resistant bacteria. In this study, we aimed to isolate and characterize lytic bacteriophages targeted against Enterococcus faecalis isolated from root canal infections obtained from clinics at the Faculty of Dentistry, Ismalia, Egypt. Bacteriophage, vB_ZEFP, was isolated from concentrated wastewater collected from hospital sewage. Morphological and genomic analysis revealed that the phage belongs to the Podoviridae family with a linear double-stranded DNA genome, consisting of 18,454, with a G + C content of 32.8%. Host range analysis revealed the phage could infect 10 of 13 E. faecalis isolates exhibiting a range of antibiotic resistances recovered from infected root canals with efficiency of plating values above 0.5. One-step growth curves of this phage showed that it has a burst size of 110 PFU per infected cell, with a latent period of 10 min. The lytic activity of this phage against E. faecalis biofilms showed that the phage was able to control the growth of E. faecalis in vitro. Phage vB_ZEFP could also prevent ex-vivo E. faecalis root canal infection. These results suggest that phage vB_ZEFP has potential for application in phage therapy and specifically in the prevention of infection after root canal treatment

    Uncovering the Prevalence and Diversity of Integrating Conjugative Elements in Actinobacteria

    Get PDF
    Horizontal gene transfer greatly facilitates rapid genetic adaptation of bacteria to shifts in environmental conditions and colonization of new niches by allowing one-step acquisition of novel functions. Conjugation is a major mechanism of horizontal gene transfer mediated by conjugative plasmids and integrating conjugative elements (ICEs). While in most bacterial conjugative systems DNA translocation requires the assembly of a complex type IV secretion system (T4SS), in Actinobacteria a single DNA FtsK/SpoIIIE-like translocation protein is required. To date, the role and diversity of ICEs in Actinobacteria have received little attention. Putative ICEs were searched for in 275 genomes of Actinobacteria using HMM-profiles of proteins involved in ICE maintenance and transfer. These exhaustive analyses revealed 144 putative FtsK/SpoIIIE-type ICEs and 17 putative T4SS-type ICEs. Grouping of the ICEs based on the phylogenetic analyses of maintenance and transfer proteins revealed extensive exchanges between different sub-families of ICEs. 17 ICEs were found in Actinobacteria from the genus Frankia, globally important nitrogen-fixing microorganisms that establish root nodule symbioses with actinorhizal plants. Structural analysis of ICEs from Frankia revealed their unexpected diversity and a vast array of predicted adaptive functions. Frankia ICEs were found to excise by site-specific recombination from their host's chromosome in vitro and in planta suggesting that they are functional mobile elements whether Frankiae live as soil saprophytes or plant endosymbionts. Phylogenetic analyses of proteins involved in ICEs maintenance and transfer suggests that active exchange between ICEs cargo-borne and chromosomal genes took place within the Actinomycetales order. Functionality of Frankia ICEs in vitro as well as in planta lets us anticipate that conjugation and ICEs could allow the development of genetic manipulation tools for this challenging microorganism and for many other Actinobacteria

    Lysogenic Conversion of the Phytopathogen Ralstonia solanacearum by the P2virus ϕRSY1

    No full text
    A P2-like phage ϕRSY1 infecting the phytopathogen Ralstonia solanacearum was isolated and characterized. The 40-kb genome of ϕRSY1 showed high sequence similarity to the Ralstonia phage ϕRSA1 and the GMI1000 prophage ϕRSX. The major genomic differences between these phages were the different orientation of the int gene and the gene content close to the cosL. ϕRSY1 and ϕRSX use a 15-base 3′ portion of the serine tRNA(GGA) gene as attB, while ϕRSA1 uses a 45-base 3′ portion of the arginine tRNA(CCG) gene. The different orientation of int in the genomes means that the gene arrangements in the prophage states are reversed in ϕRSY1 and ϕRSA1. Several putative gene products of ϕRSY1 may affect the bacterium’s fitness. ϕRSY1 contains an open reading frame (ORF) that seems to encode a protein similar to Vgr in the type VI secretion system of various bacterial species. ϕRSY1 lysogens showed phenotypic changes including enhanced twitching motility, large colony formation, and easy aggregation of cells, suggesting involvement of this ORF in the changes. In view of these phage gene arrangements, we surveyed prophages in the genomes of various R. solanacearum strains and found that the P2-like phages of R. solanacearum (14 phages) consist of two major groups: the ϕRSY1-type and the ϕRSA1-type. The relationships and evolution of these P2-like phages inferred from our data are discussed in detail

    Incidence, Phenotypic and Genotypic Antimicrobial Resistance of Zoonotic Salmonella spp. Isolated from Broiler chicken and Human in Egypt

    No full text
     This study investigated incidence, phenotypic-genotypic antimicrobial resistance in zoonotic salmonellae from broiler chicken and human in Egypt. Two hundred and forty samples were randomly collected from broilers including (liver, gizzard, intestine, n=60 of each) and from workers (hand swabs, n=60) at poultry outlets. Isolation, biochemical and serological identifications of Salmonella spp. were performed. Antimicrobial susceptibility testing of Salmonella serotypes was done using disc diffusion method. The multiple antibiotic resistance (MAR) index of Salmonella serotypes was calculated. Genotypic detection of antimicrobial resistance genes [blaTEM, floR and tetA(A)] was identified in phenotypically resistant salmonellae using PCR. The incidence of Salmonella spp. was 5% in each of liver and intestine of broilers, and 1.66% in gizzard of broilers; and 3.33% in hand swabs of workers. The serotypes of S. Typhimurium were distributed into liver of broilers (3 out of 4, 75%) and into intestine of broilers (1 out of 4, 25%). The distribution of S. Enteritidis was 33.3% (1 out of 3) in gizzard and )66.7%, 2 out of 3) was distributed in intestine of broiler. Two isolates of S. Kentucky (100%) were distributed in hand swabs from workers. The peak resistance (100%) of 9 Salmonella isolates was found to each of chloramphenicol and ampicillin followed by a highest resistance (88.8%) to doxycycline The profile of each S. Typhimurium and S. Enteritidis isolates from broiler chicken reached the peak resistance (100%) for ampicillin, chloramphenicol and doxycycline The multiple antibiotic resistance (MAR) index of Salmonella isolates was ranged from 0.23 to 0.54 with an average of 0.34. The blaTEM, tetA(A) and floR genes were identified with similar distribution percentage of 66.7% in S. Typhimurium isolates from liver. all isolates of S. Enteritidis from gizzard, S. Typhimurium from intestine, S. Enteritidis from intestine and S. Kentucky from hand swabs harbored similar distribution percentage (100%) for each blaTEM, tetA(A) and floR gene. Further studies are required to predict biological tools such as bacteriophages during poultry production to minimize entry of multidrug resistant (MDR) salmonellae from broiler chicken to human food chain

    Detection of multidrug-resistant Shiga toxin-producing Escherichia coli in some food products and cattle faeces in Al-Sharkia, Egypt: one health menace

    No full text
    Abstract Background Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen, that is transmitted from a variety of animals, especially cattle to humans via contaminated food, water, feaces or contact with infected environment or animals. The ability of STEC strains to cause gastrointestinal complications in human is due to the production of Shiga toxins (sxt). However, the transmission of multidrug-resistance STEC strains are linked with a severity of disease outcomes and horizontal spread of resistance genes in other pathogens. The result of this has emerged as a significant threat to public health, animal health, food safety, and the environment. Therefore, the purpose of this study is to investigate the antibiogram profile of enteric E. coli O157 isolated from food products and cattle faeces samples in Zagazig City, Al-Sharkia, Egypt, and to reveal the presence of Shiga toxin genes stx1 and stx2 as virulence factors in multidrug-resistant isolates. In addition to this, the partial 16S rRNA sequencing was used for the identification and genetic recoding of the obtained STEC isolates. Results There was a total of sixty-five samples collected from different geographical regions at Zagazig City, Al-Sharkia—Egypt, which were divided into: 15 chicken meat (C), 10 luncheon (L), 10 hamburgers (H), and 30 cattle faeces (CF). From the sixty-five samples, only 10 samples (one from H, and 9 from CF) were identified as suspicious E. coli O157 with colourless colonies on sorbitol MacConkey agar media with Cefixime- Telurite supplement at the last step of most probable number (MPN) technique. Eight isolates (all from CF) were identified as multidrug-resistant (MDR) as they showed resistance to three antibiotics with multiple antibiotic resistance (MAR) index ≥ 0.23, which were assessed by standard Kirby-Bauer disc diffusion method. These eight isolates demonstrated complete resistance (100%) against amoxicillin/clavulanic acid, and high frequencies of resistance (90%, 70%, 60%,60%, and 40%) against cefoxitin, polymixin, erythromycin, ceftazidime, and piperacillin, respectively. Those eight MDR E. coli O157 underwent serological assay to confirm their serotype. Only two isolates (CF8, and CF13), both from CF, were showed strong agglutination with antisera O157 and H7, as well as resistance against 8 out of 13 of the used antibiotics with the highest MAR index (0.62). The presence of virulence genes Shiga toxins (stx1 and stx2) was assessed by PCR technique. CF8 was confirmed for carrying stx2, while CF13 was carrying both genes stx1, and stx2. Both isolates were identified by partial molecular 16S rRNA sequencing and have an accession number (Acc. No.) of LC666912, and LC666913 on gene bank. Phylogenetic analysis showed that CF8, and CF13 were highly homologous (98%) to E. coli H7 strain, and (100%) to E. coli DH7, respectively. Conclusion The results of this study provides evidence for the occurrence of E. coli O157:H7 that carries Shiga toxins stx1 and/or stx2, with a high frequency of resistance to antibiotics commonly used in human and veterinary medicine, in Zagazig City, Al-Sharkia, Egypt. This has a high extent of public health risk posed by animal reservoirs and food products with respect to easy transmission causing outbreaks and transfer resistance genes to other pathogens in animal, human, and plants. Therefore, environmental, animal husbandry, and food product surveillance, as well as, clinical infection control, must be strengthened to avoid the extra spread of MDR pathogens, especially MDR STEC strains

    <i>Pseudomonas</i> Phage ZCPS1 Endolysin as a Potential Therapeutic Agent

    No full text
    The challenge of antibiotic resistance has gained much attention in recent years due to the rapid emergence of resistant bacteria infecting humans and risking industries. Thus, alternatives to antibiotics are being actively searched for. In this regard, bacteriophages and their enzymes, such as endolysins, are a very attractive alternative. Endolysins are the lytic enzymes, which are produced during the late phase of the lytic bacteriophage replication cycle to target the bacterial cell walls for progeny release. Here, we cloned, expressed, and purified LysZC1 endolysin from Pseudomonas phage ZCPS1. The structural alignment, molecular dynamic simulation, and CD studies suggested LysZC1 to be majorly helical, which is highly similar to various phage-encoded lysozymes with glycoside hydrolase activity. Our endpoint turbidity reduction assay displayed the lytic activity against various Gram-positive and Gram-negative pathogens. Although in synergism with EDTA, LysZC1 demonstrated significant activity against Gram-negative pathogens, it demonstrated the highest activity against Bacillus cereus. Moreover, LysZC1 was able to reduce the numbers of logarithmic-phase B. cereus by more than 2 log10 CFU/mL in 1 h and also acted on the stationary-phase culture. Remarkably, LysZC1 presented exceptional thermal stability, pH tolerance, and storage conditions, as it maintained the antibacterial activity against its host after nearly one year of storage at 4 °C and after being heated at temperatures as high as 100 °C for 10 min. Our data suggest that LysZC1 is a potential candidate as a therapeutic agent against bacterial infection and an antibacterial bio-control tool in food preservation technology
    corecore