13 research outputs found

    A Review of the Energy Potential of Residual Biomass for Coincineration in Kazakhstan

    Get PDF
    Although it has access to hydrocarbon reserves, Kazakhstan has developed a strategy for the transition to a low-carbon economy, which should include the use of renewable energy sources. In this framework, the use of biomass from waste could have the potential to reduce emissions from traditionally fueled energy generation, as well as adding value to the generated waste, which also improves waste management according to the principles of a circular economy. The analysis of the resources and energy potential from residual biomass in Kazakhstan presents an annual production of 37.26 106 tons of residual biomass, which could be capable of producing an energy potential of 466.74 PJ/year, little more than half to the total production from all the installed power plants in the country. Agricultural, animal and municipal solid waste are available to produce energy in Kazakhstan based on combustion technologies; however, animal waste and agricultural are the main potential sources with 61.02% and 38.34% of the theoretical total biomass potential energy analyses, respectively. Considering that 80% of Kazakhstan’s electricity generation comes from coal-fired plants, energy from agriculture could be co-fired for the gradual replacement of coal with biomass in operational power plants, without substantially increasing costs or infrastructure investments, thereby making the transition to a low-carbon economy and renewable energy sources in the country easier.Government of the Republic of Kazakhstan Ministry of Education and Science of the Republic of Kazakhstan AP14871168 AP14870834research group TEP-968 (Technologies for Circular Economy) of the University of Granad

    MINIMIZATION OF TOXIC EMISSIONS DURING BURNING LOW-GRADE FUEL AT KAZAKHSTAN THERMAL POWER PLANT

    Get PDF
    This paper presents new results of computational experiments on the implementation of Overfire Air (OFA) technologies using an example of a combustion chamber of the BKZ-75 boiler of the Shakhtinskaya power plant (Shakhtinsk, Kazakhstan) burning high-ash Karaganda coal. The effect of mass air flow through special nozzles located above the burner level on the flow aerodynamics, temperature fields, concentration fields of carbon monoxide CO and nitrogen NO over the entire volume of the combustion chamber was studied. The studied characteristics were compared for various percentages of supplying additional air through OFA injectors: OFA is 0% (basic version), 10% and 18 %. It was shown that the installation of OFA injectors leads to a change in the field of the total velocity vector, temperature, and concentrations of carbon oxides and nitrogen. An increase in the percentage of air supplied through OFA injectors to 18% leads to a decrease in the concentrations of carbon monoxide CO by about 36% and nitrogen oxide NO by 25% compared with the base case. The obtained results will optimize the process of burning pulverized fuel in the combustion chamber of the BKZ-75 boiler, increase the efficiency of fuel burnout, reduce harmful emissions and introduce OFAtechnology at other coal-burning thermal power plants

    3-D MODELING OF HEAT AND MASS TRANSFER PROCESS DURING THE COMBUSTION OF SOLID FUEL IN A SWIRL FURNACE

    Get PDF
    In this work, a comprehensive study of thermal processes and aerodynamic and concentration characteristics of the combustion chamber of the boiler BKZ-75 of the Shakhtinskaya thermal power plant (Kazakhstan) are presented. A comparison of the characteristics of the combustion processes for two cases is given for the direct-flow method of supplying the mixture - the burners are located on opposite-side walls and the swirl-air mixture supplying method - burners with a swirl angle of the air mixture flow and their inclination to the centre of symmetry of the boiler by 30 degrees. The research results allow us to determine the optimal technological parameters of the studied object, to improve the methodology for the numerical study of heat and mass transfer processes in high-temperature and chemically reacting flows in the presence of turbulence, and also develop appropriate technological solutions for installing burner devices (direct-flow or swirl) in the studied combustion chamber

    SIMULATION OF LOW-GRADE COAL COMBUSTION IN REAL CHAMBERS OF ENERGY OBJECTS

    Get PDF
    The aim of the work is to create new computer technologies for 3D modelling of heat and mass transfer processes in high-temperature physicochemically reacting environments that will allow to determine the aerodynamics of the flow and heat and mass transfer characteristics of technological processes occurring in the combustion chambers in existing coal-fired thermal power plants of the Republic of Kazakhstan. The novelty of the research lies in the use of the latest information technologies of 3D modelling, which will enable project participants to obtain new data on complex heat and mass transfer processes when burning pulverized coal in real combustion chambers operating in Kazakhstan’s Thermal Power Plants (TPP). A numerical simulation, including thermodynamic, kinetic and threedimensional computer simulation of heat and mass transfer processes when burning low-grade fuel, will allow finding optimal conditions for setting adequate physical, mathematical and chemical models of the technological process of combustion of burning high ash coals. The computer modelling methods proposed for the development are new and technically feasible, since coal-fired power plants all over the world use all types of coal. The developed technologies will allow replacing or eliminating the conduct of expensive and labour-consuming natural experiments on coal-fired power plants

    Numerical investigation of heat and mass transfer processes in the combustion chamber of industrial power plant boiler. Part 1, Flow field, temperature distribution, chemical energy distribution

    Get PDF
    In the present paper, the furnace chamber of the BKZ-160 boiler ofAlmaty TPP-3 (Kazakhstan) has been calculated. The thermal characteristics of the process were studied in the form of the distribution of temperature fields and chemical energy, and the aerodynamics of the combustion chamber was also calculated. The type of fuel, its elementary and fractional composition, exerts the greatest influence on the course of heat-mass exchange processes and aerodynamics. The computational experiment was carried out with two models of particle size distribution: a polydisperse fuel flame (the particle diameter varies from 10 to 120 μm) and monodisperse fuel flame (particle size identical and equal to dp = 60 μm). Based on the results of the computational experiments, the main regularities in the distribution of heat fluxes in the combustion chamber volume and flow aerodynamicswere obtained. It is shown that the greatest thermal load falls on the central region of the walls of the combustion chamber and the location of the burner devices, which is typical for both mono- and polydisperse fuel flames. The temperature data obtained as a result of the computational experiment showed better convergence with the empirical data obtained directly at TPP-3. Aerodynamics of the flow for the two selected models of particle size distribution has insignificant differences, but how they affect other characteristics of the process is one of the following tasks in view of the authors. It should be noted that the calculation of the polydisperse fuel flame takes much more calculation time

    Computer Technologies of 3D Modeling by Combustion Processes to Create Effective Methods of Burning Solid Fuel and Reduce Harmful Dust and Gas Emissions into the Atmosphere

    No full text
    Using numerical methods, studies have been carried out to determine the effect of the introduction of the technology of two-stage combustion of high-ash Karaganda coal on the main characteristics of heat and mass transfer processes in the furnace of the BKZ-75 boiler at Shakhtinskaya TPP (Kazakhstan). Various regimes of supplying additional air into the combustion space, the volume of which varied from 0% (traditional basic version) to 30% of the total volume of air required for fuel combustion, have been investigated using 3D computer modeling methods. The performed computational experiments made it possible to obtain the distributions of the total velocity vector, temperature fields, concentration fields of carbon monoxide CO and nitrogen dioxide NO2 over the entire volume of the furnace and at the outlet from it. The introduction of the two-stage combustion technology made it possible to optimize the combustion of high-ash coal, since in this case there is an increase in the temperature in the torch core and a decrease in it at the outlet from the furnace, which has a significant effect on the chemical processes of the formation of combustion products. Based on the results obtained, it can be concluded that an increase in the percentage of air supplied through additional injectors to 18% leads to a decrease in the concentrations of carbon monoxide CO by about 36%, and nitrogen dioxide NO2 by 25% compared to the base case. A further increase in the volume of additional air leads to a deterioration in these indicators. The results obtained will make it possible to optimize the combustion of low-grade fuel in the furnace of the BKZ-75 boiler, increase the efficiency of fuel burnout, reduce harmful emissions into the atmosphere, and introduce a two-stage combustion technology at other coal-fired TPPs

    Investigation of heat and mass transfer processes in the combustion chambe of industrial power plant boiler. Part 2. Distribution of concentrations of O2, CO, CO2, NO

    Get PDF
    In the present paper, a study of furnace processes in the combustion chamber of the real energy boiler BKZ-160 of Almaty TPP-3 (Kazakhstan) using three-dimensional modeling methods has been carried out. Calculations of the combustion chamber for flame combustion of pulverized coal have been performed. The main purpose of this paper was to study the effect of fractional fuel composition on the concentration characteristics of the combustion process. Numerical simulation was carried out with two models of coal particle size distribution: monodisperse fuel flame (coal particle size identical and equal to 60 μm) and a polydisperse fuel flame (coal particle diameter varies from 10 to 120 μm). The polydisperse distribution corresponds to the fractional distribution (percentage of total coal particles) calculated for this boiler: the first fraction - 10% with dp=10 μm; 20% with dp=30 μm; 40% with dp=60 μm; 20% with dp=100 μm; 10% with dp=120 μm.The numerical simulation results of the influence of the pulverized coal particle size composition on concentration characteristics of combustion process are presented. The distributions of oxidizer (oxygen) and combustion products (NO, CO, CO2) are shown. Areas with the greatest concentration of gas products of burning are determined, regularities of formation of products and their concentration at the exit of fire chamber are also determined. The effect of fractional fuel composition on the obtained characteristics is sufficiently large, the empirical data obtained directly at TPP-3 show better convergence with the result of the computational experiment that confirms simultaneously the adequacy of the used physical and mathematical statement of the problem, as well as the validity of using the model of polyfractional distribution

    Plasma-Supported Coal Combustion in Boiler Furnace

    No full text

    Computational modeling of heat and mass transfer processes in combustion chamber at power plant of Kazakhstan

    No full text
    In this paper the results obtained by the method of numerical modelling of Ekibastuz coal burning in furnace of Kazakhstan Power Plant. Numerical experiment was carried out on the basis of three-dimensional equations of convective heat and mass transfer, taking into account the heat propagation, heat radiation, chemical reactions and multiphase structure of the medium to predict the influence of different water content in coal on overall furnace operation and formation of combustion products
    corecore