9 research outputs found

    Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery : evaluation of the surface properties and effect on their distribution

    No full text
    Due to the unique anatomical structure of the eye, ocular drug delivery is a promising delivery route for the treatment of several ocular diseases, such as the ocular neovascularization that contributes to diabetic retinopathy. This disease is triggered by inflammation, retinal ischemia, and/or deposits of advanced-glycation end-products (AGEs), as well as increased levels of vascular endothelial growth factor (VEGF), interleukins, or reactive oxygen species (ROS). Gold has unique antioxidant and antiangiogenic properties and can inhibit angiogenic molecules. Furthermore, gold nanoparticles (GNPs) are not only biocompatible, they are easy to synthesize, they absorb and scatter visible light, and they can be made with precise control over size and shape. GNPs are an excellent candidate for ocular drug delivery because they can be conjugated to an extraordinarily diverse array of different biomolecules, and surface functionalization can improve the mobility of GNPs across the physiological barriers of the eye, such as the vitreous humour or the inner limiting membrane. For this purpose, we employed low molecular weight hyaluronan (HA) to increase the mobility of the nanoparticles as well as target them to HA receptors that are expressed in different cells of the eye. In this study, the combination of gold and HA enhanced the stability of the whole carrier and promoted their distribution across ocular tissues and barriers to reach the retina. Moreover, analysis in vitro, ex vivo, and in ovo revealed the protective and antiangiogenic effect of GNPs as inhibitors of AGEs-mediatedretinal pigment epithelial cell death and neovascularization. We demonstrated that conjugation with HA enhances GNP stability and distribution due to a specific CD44 receptor interaction. The capacity of HA-GNPs to distribute through the vitreous humour and their avidity for the deeper retinal layers ex vivo, suggest that HA-GNPs are a promising delivery system for the treatment of ocular neovascularization and related disorders

    A flexible architecture to enhance wearable robots: Integration of EMG-informed models

    No full text
    Research on wearable robotic devices is fostered by the need to assist and restore human locomotion, which is essential for most daily life activities. Despite a continuous technological advancement, many challenges are to be faced before establishing the use of these devices as part of the rehabilitation process. A main concern is how to actively engage the users and monitor how they are affected by the exoskeleton. Basic analyses, such as measuring walking speed, must be extended to include analysis on balance, brain activity, and evaluation of neuromechanical effects. This scenario requires the use of different distributed sensor devices that must be carefully synchronized. This work describes the architecture we implemented to extend the capabilities of the H2 exoskeleton. As a proof of the architecture validity, we show the online estimation of users' muscle forces through the acquisition of electromyographic signals, that drive neuromusculoskeletal models. The proposed framework, built upon the Robot Operating System (ROS), aims to be reusable for a wide range of setups, including different exoskeletons and sensors

    Clinical implications of antibiotic pharmacokinetic principles in the critically ill

    No full text
    Successful antibiotic therapy in the critically ill requires sufficient drug concentrations at the site of infection that kill or suppress bacterial growth. The relationship between antibiotic exposure and achieving the above effects is referred to as pharmacokinetics/pharmacodynamics (PK/PD). The associated indices therefore provide logical targets for optimal antibiotic therapy. While dosing regimens to achieve such targets have largely been established from studies in animals and non-critically ill patients, they are often poorly validated in the ICU. Endothelial dysfunction, capillary leak, altered major organ blood flow, deranged plasma protein concentrations, extremes of body habitus, the application of extracorporeal support modalities, and a higher prevalence of intermediate susceptibility, independently, and in combination, significantly confound successful antibiotic treatment in this setting. As such, the prescription of standard doses are likely to result in sub-therapeutic concentrations, which in turn may promote treatment failure or the selection of resistant pathogens. This review article considers these issues in detail, summarizing the key changes in antibiotic PK/PD in the critically ill, and suggesting alternative dosing strategies that may improve antibiotic therapy in these challenging patients

    B. Sprachwissenschaft.

    No full text

    Further Progress in Venereology

    No full text
    corecore