10 research outputs found

    Modeling and Compensation of Transceiver Non-Reciprocity in TDD Multi-Antenna Base-Station

    Get PDF
    Due to the increasing demands for higher system capacity, higher data rates and better quality of service in wireless networks, advanced techniques that improve wireless link reliability and spectral efficiency are introduced. This includes different multi-antenna technologies, in particular multi-user (MU) MIMO-OFDM. In MU MIMO-OFDM systems, base-station with multiple antennas communicates simultaneously with multiple users over a given time-frequency resource. In downlink transmission, base-station transmits multiple data streams through its antennas towards the user devices. In uplink transmission, the user equipment send in parallel multiple data streams towards the base-station. In general, channel non-reciprocity is a very important factor in cellular communications, in particular in precoded MU MIMO-OFDM systems adopting time division duplexing (TDD). Based on the channel reciprocity principle, the channel state information at base-station for the downlink transmission can be determined through estimating the uplink channels. In practice, however, there are always unavoidable frequency mismatch characteristics between transmitter and receiver. Frequency response mismatch can thus change the reciprocal nature of downlink and uplink channels. The impact of transceiver non-reciprocity at equipment on user side causes inter-stream interference which can be compensated using detection processing. The impact of transceiver non-reciprocity at base-station causes inter-user interference and degrades the system performance of MU MIMO-OFDM systems. To ensure the system reliability and high performance in case of transceiver non-reciprocity, some non-reciprocity estimation and compensation methods are required. The previous work has proposed the estimation-compensation framework that gives a flexible solution to restore the channel reciprocity. But there is a need to validate the findings and performance of the proposed estimation-compensation framework. The modeling of transceiver frequency response mismatch characteristics using actual measurement data has been carried out in this thesis research work. The actual measurement data comprises of one base-station with two antennas and two user equipment devices with single antenna. The estimated uplink and downlink channels from measurement data are used to compute the non-reciprocity matrix at base-station and at the equipment on user side after mathematical calculations. The normalized parameters for transceiver non-reciprocity matrices are extracted subcarrier-wise. The frequency-domain normalized non-reciprocity parameters are modeled as a FIR filter in the time-domain and the most energy concentrates then on few time-domain taps. The extracted parameters are mildly frequency-selective. The impact of extracted transceiver non-reciprocity is then analyzed by implementing a simulator of TDD precoded MU MIMO-OFDM system. In general, the frequency-selectivity implies that the reciprocity estimation and compensation is needed subcarrier-wise. The pilot-based estimation of non-reciprocity parameters at base-station is carried out in order to enhance the system performance. To estimate channel non-reciprocity parameters, a link between base-station and one of user equipment devices is assumed. The right choice of selecting the user is also important for noise reduction in estimation. For estimation, the DL transmission channel is modeled as a Rayleigh fading multipath channel with a given 7-tap channel power delay profile. The downlink data including sparsely located pilots at selected subcarriers is transmitted to the user through downlink channel without precoding. The downlink channel is then estimated at the user equipment side. This provides estimates only at the pilot subcarriers. Therefore, linear interpolation is used to obtain channel response estimates at the actual data subcarriers. The uplink pilot data is transmitted to base-station from user equipment through uplink channel. The uplink channel is obtained by estimated downlink channel in case of non-reciprocity parameters. Then, estimate of non-reciprocity at base-station is computed by using inverse processing and an interpolator. The estimated parameters are used as a compensator filter in order to compensate the channel non-reciprocity in the system. The simulated results show that the performance deviates from the ideal linear precoded MU MIMO-OFDM system because of non-reciprocity in case of both error control coded and uncoded channels. The compensated results in terms of coded and uncoded channel schemes have been evaluated which are closer to ideal linear precoded MU-MIMO OFDM system. These results show that the impact of non-reciprocity on system performance is less severe when a coded channel is deployed as compared to uncoded channel. The modeling of transceiver frequency response mismatch characteristics using actual measurement data proves that the proposed non-reciprocity model in the previous research work is close to reality

    Modeling and Compensation of Transceiver Non-Reciprocity in TDD Multi-Antenna Base-Station

    Get PDF
    Due to the increasing demands for higher system capacity, higher data rates and better quality of service in wireless networks, advanced techniques that improve wireless link reliability and spectral efficiency are introduced. This includes different multi-antenna technologies, in particular multi-user (MU) MIMO-OFDM. In MU MIMO-OFDM systems, base-station with multiple antennas communicates simultaneously with multiple users over a given time-frequency resource. In downlink transmission, base-station transmits multiple data streams through its antennas towards the user devices. In uplink transmission, the user equipment send in parallel multiple data streams towards the base-station. In general, channel non-reciprocity is a very important factor in cellular communications, in particular in precoded MU MIMO-OFDM systems adopting time division duplexing (TDD). Based on the channel reciprocity principle, the channel state information at base-station for the downlink transmission can be determined through estimating the uplink channels. In practice, however, there are always unavoidable frequency mismatch characteristics between transmitter and receiver. Frequency response mismatch can thus change the reciprocal nature of downlink and uplink channels. The impact of transceiver non-reciprocity at equipment on user side causes inter-stream interference which can be compensated using detection processing. The impact of transceiver non-reciprocity at base-station causes inter-user interference and degrades the system performance of MU MIMO-OFDM systems. To ensure the system reliability and high performance in case of transceiver non-reciprocity, some non-reciprocity estimation and compensation methods are required. The previous work has proposed the estimation-compensation framework that gives a flexible solution to restore the channel reciprocity. But there is a need to validate the findings and performance of the proposed estimation-compensation framework. The modeling of transceiver frequency response mismatch characteristics using actual measurement data has been carried out in this thesis research work. The actual measurement data comprises of one base-station with two antennas and two user equipment devices with single antenna. The estimated uplink and downlink channels from measurement data are used to compute the non-reciprocity matrix at base-station and at the equipment on user side after mathematical calculations. The normalized parameters for transceiver non-reciprocity matrices are extracted subcarrier-wise. The frequency-domain normalized non-reciprocity parameters are modeled as a FIR filter in the time-domain and the most energy concentrates then on few time-domain taps. The extracted parameters are mildly frequency-selective. The impact of extracted transceiver non-reciprocity is then analyzed by implementing a simulator of TDD precoded MU MIMO-OFDM system. In general, the frequency-selectivity implies that the reciprocity estimation and compensation is needed subcarrier-wise. The pilot-based estimation of non-reciprocity parameters at base-station is carried out in order to enhance the system performance. To estimate channel non-reciprocity parameters, a link between base-station and one of user equipment devices is assumed. The right choice of selecting the user is also important for noise reduction in estimation. For estimation, the DL transmission channel is modeled as a Rayleigh fading multipath channel with a given 7-tap channel power delay profile. The downlink data including sparsely located pilots at selected subcarriers is transmitted to the user through downlink channel without precoding. The downlink channel is then estimated at the user equipment side. This provides estimates only at the pilot subcarriers. Therefore, linear interpolation is used to obtain channel response estimates at the actual data subcarriers. The uplink pilot data is transmitted to base-station from user equipment through uplink channel. The uplink channel is obtained by estimated downlink channel in case of non-reciprocity parameters. Then, estimate of non-reciprocity at base-station is computed by using inverse processing and an interpolator. The estimated parameters are used as a compensator filter in order to compensate the channel non-reciprocity in the system. The simulated results show that the performance deviates from the ideal linear precoded MU MIMO-OFDM system because of non-reciprocity in case of both error control coded and uncoded channels. The compensated results in terms of coded and uncoded channel schemes have been evaluated which are closer to ideal linear precoded MU-MIMO OFDM system. These results show that the impact of non-reciprocity on system performance is less severe when a coded channel is deployed as compared to uncoded channel. The modeling of transceiver frequency response mismatch characteristics using actual measurement data proves that the proposed non-reciprocity model in the previous research work is close to reality

    Atangana–Baleanu and Caputo Fabrizio Analysis of Fractional Derivatives for Heat and Mass Transfer of Second Grade Fluids over a Vertical Plate: A Comparative Study

    No full text
    This communication addresses a comparison of newly presented non-integer order derivatives with and without singular kernel, namely Michele Caputo–Mauro Fabrizio (CF) C F ( ∂ β / ∂ t β ) and Atangana–Baleanu (AB) A B ( ∂ α / ∂ t α ) fractional derivatives. For this purpose, second grade fluids flow with combined gradients of mass concentration and temperature distribution over a vertical flat plate is considered. The problem is first written in non-dimensional form and then based on AB and CF fractional derivatives, it is developed in fractional form, and then using the Laplace transform technique, exact solutions are established for both cases of AB and CF derivatives. They are then expressed in terms of newly defined M-function M q p ( z ) and generalized Hyper-geometric function p Ψ q ( z ) . The obtained exact solutions are plotted graphically for several pertinent parameters and an interesting comparison is made between AB and CF derivatives results with various similarities and differences

    Role of virtual reality and active video games in motor and executive functions in cerebral palsy: a systematic review

    No full text
    Objective: To explore current evidence on the role of virtual reality and active video games in motor and executive functions compared to conventional physical therapies in cerebral palsy patients. Method: The systematic review was conducted at the University Institute of Physical Therapy, Lahore, Pakistan, and comprised search on MEDLINE via PubMed, Pedro and Cochrane Central related to randomised and clinical controlled trials published from 2005 to 2020. For critical appraisal of the studies, the Pedro tool was used, while methodological quality assessment was done using the Cochrane risk of bias tool. Results: Of the 15 articles reviewed, 14(93.3%) reported significant effect of virtual reality and active video games on motor functions. Critical appraisal found the quality of the studies from fair to high. Low risk was found in 4(26.7%) articles in terms of selection, 3(20%) allocation, 6(40%) detection, and 8(53.3%) had attrition bias. Unclear risk was reported in the performance and reporting bias domain in all the 15(100%) articles. Conclusion: Virtual reality games cannot be used as a substitute for therapy, but along with the conventional physical therapy, they are very effective and produce significant changes in motor functions in cerebral palsy patients. As for executive functions, more research needs to be done to determine the impact of these games at a higher level of brain. Key Words: Virtual reality therapy, Active video games, Motor rehabilitation, Executive functions

    An examination of firms entrepreneurial orientation, innovation and performance of large manufacturing firms in Pakistan

    Get PDF
    The purpose of this paper is to extend the understanding of relationships between entrepreneurial orientation, and performance of large manufacturing firms in Pakistan and to examine the role of innovation as a mediator of the above relationship. The paper presents a review of studies containing empirical research incorporating entrepreneurial orientation, innovation and firm performance. On the basis of literature, a model of the relationship of variables has been developed. In total, 320 owners/managers of manufacturing firms in Pakistan completed the survey questionnaire and the data was analyzed using PLS-SEM. The study found a negative relationship between entrepreneurial orientation and performance, however, further reveals that innovation mediates the relationship between entrepreneurial orientation and performance. The major contribution of this paper is to explore the mediating impact of innovation on the relationship between entrepreneurial orientation, and performance of large manufacturing firms in Pakistan. The originality of this paper is that it provides useful implication for different types of organizations to understand the relationship of entrepreneurial orientation, and innovation to introduce innovative products and processes and to improve a firms performance

    Osteogenic Induction with Silicon Hydroxyapatite Using Modified Autologous Adipose Tissue-Derived Stromal Vascular Fraction: In Vitro and Qualitative Histomorphometric Analysis

    No full text
    Large bone defects requiring invasive surgical procedures have long been a problem for orthopedic surgeons. Despite the use of autologous bone grafting, satisfactory results are often not achieved due to associated limitations. Biomaterials are viable alternatives and have lately been used in association with Stromal Vascular Fraction (SVF), stem cells, and signaling factors for bone tissue engineering (BTE). The objective of the current study was to assess the biocompatibility of Silicon Hydroxyapatite (Si-HA) and to improve osteogenic potential by using autologous adipose-derived SVF with Si-HA in a rabbit bone defect model. Si-HA granules synthesized using a wet precipitation method were used. They were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). A hemolysis assay was used to assess the hemolytic effects of Si-HA, while cell viability was assessed through Alamar Blue assay using MC3T3 mouse osteoblasts. The osteogenic potential of Si-HA both alone and with enzymatically/non-enzymatically-derived SVF (modified) was performed by implantation in a rabbit tibia model followed by histomorphometric analysis and SEM of dissected bone after six weeks. The results showed that Si-HA granules were microporous and phase pure and that the addition of Silicon did not influence Si-HA phase composition. Si-HA granules were found to be non-hemolytic on the hemolysis assay and non-toxic to MC3T3 mouse osteoblasts on the Alamar Blue assay. Six weeks following implantation Si-HA showed high biocompatibility, with increased bone formation in all groups compared to control. Histologically more mature bone was formed in the Si-HA implanted along with non-enzymatically-derived modified SVF. Bone formation was observed on and around Si-HA, reflecting osseointegration. In conclusion, Si-HA is osteoconductive and promotes osteogenesis, and its use with SVF enhances osteogenesis

    An examination of firm’s entrepreneurial orientation, innovation and performance of large manufacturing firms in Pakistan

    Get PDF
    The purpose of this paper is to extend the understanding of relationships between entrepreneurial orientation, and performance of large manufacturing firms in Pakistan and to examine the role of innovation as a mediator of the above relationship. The paper presents a review of studies containing empirical research incorporating entrepreneurial orientation, innovation and firm performance. On the basis of literature, a model of the relationship of variables has been developed. In total, 320 owners/managers of manufacturing firms in Pakistan completed the survey questionnaire and the data was analyzed using PLS-SEM. The study found a negative relationship between entrepreneurial orientation and performance, however, further reveals that innovation mediates the relationship between entrepreneurial orientation and performance. The major contribution of this paper is to explore the mediating impact of innovation on the relationship between entrepreneurial orientation, and performance of large manufacturing firms in Pakistan. The originality of this paper is that it provides useful implication for different types of organizations to understand the relationship of entrepreneurial orientation, and innovation to introduce innovative products and processes and to improve a firms performance
    corecore