28 research outputs found

    Phase Pure Synthesis and Morphology Dependent Magnetization in Mn Doped ZnO Nanostructures

    Get PDF
    Zn 0.95 Mn 0.05 O nanostructures were synthesized using sol gel derived autocombustion technique. As-burnt samples were thermally annealed at different temperatures (400, 600, and 800 ∘ C) for 8 hours to investigate their effect on structural morphology and magnetic behavior. X-ray diffraction and scanning electron microscopic studies demonstrated the improvement in crystallinity of phase pure wurtzite structure of Mn doped ZnO with variation of annealing temperature. Energy dispersive X-ray elemental compositional analysis confirmed the exact nominal compositions of the reactants. Electrical resistivity measurements were performed with variation in temperature, which depicted the semiconducting nature similar to parent ZnO after 5 at% Mn doping. Magnetic measurements by superconducting quantum interference device detected an enhanced trend of ferromagnetic interactions in thermally annealed compositions attributed to the improved structural morphology and crystalline refinement process

    Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019

    Get PDF
    Background Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030. To understand current rates, recent trends, and potential trajectories of child mortality for the next decade, we present the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 findings for all-cause mortality and cause-specific mortality in children younger than 5 years of age, with multiple scenarios for child mortality in 2030 that include the consideration of potential effects of COVID-19, and a novel framework for quantifying optimal child survival. Methods We completed all-cause mortality and cause-specific mortality analyses from 204 countries and territories for detailed age groups separately, with aggregated mortality probabilities per 1000 livebirths computed for neonatal mortality rate (NMR) and under-5 mortality rate (USMR). Scenarios for 2030 represent different potential trajectories, notably including potential effects of the COVID-19 pandemic and the potential impact of improvements preferentially targeting neonatal survival. Optimal child survival metrics were developed by age, sex, and cause of death across all GBD location-years. The first metric is a global optimum and is based on the lowest observed mortality, and the second is a survival potential frontier that is based on stochastic frontier analysis of observed mortality and Healthcare Access and Quality Index. Findings Global U5MR decreased from 71.2 deaths per 1000 livebirths (95% uncertainty interval WI] 68.3-74-0) in 2000 to 37.1 (33.2-41.7) in 2019 while global NMR correspondingly declined more slowly from 28.0 deaths per 1000 live births (26.8-29-5) in 2000 to 17.9 (16.3-19-8) in 2019. In 2019,136 (67%) of 204 countries had a USMR at or below the SDG 3.2 threshold and 133 (65%) had an NMR at or below the SDG 3.2 threshold, and the reference scenario suggests that by 2030,154 (75%) of all countries could meet the U5MR targets, and 139 (68%) could meet the NMR targets. Deaths of children younger than 5 years totalled 9.65 million (95% UI 9.05-10.30) in 2000 and 5.05 million (4.27-6.02) in 2019, with the neonatal fraction of these deaths increasing from 39% (3.76 million 95% UI 3.53-4.021) in 2000 to 48% (2.42 million; 2.06-2.86) in 2019. NMR and U5MR were generally higher in males than in females, although there was no statistically significant difference at the global level. Neonatal disorders remained the leading cause of death in children younger than 5 years in 2019, followed by lower respiratory infections, diarrhoeal diseases, congenital birth defects, and malaria. The global optimum analysis suggests NMR could be reduced to as low as 0.80 (95% UI 0.71-0.86) deaths per 1000 livebirths and U5MR to 1.44 (95% UI 1-27-1.58) deaths per 1000 livebirths, and in 2019, there were as many as 1.87 million (95% UI 1-35-2.58; 37% 95% UI 32-43]) of 5.05 million more deaths of children younger than 5 years than the survival potential frontier. Interpretation Global child mortality declined by almost half between 2000 and 2019, but progress remains slower in neonates and 65 (32%) of 204 countries, mostly in sub-Saharan Africa and south Asia, are not on track to meet either SDG 3.2 target by 2030. Focused improvements in perinatal and newborn care, continued and expanded delivery of essential interventions such as vaccination and infection prevention, an enhanced focus on equity, continued focus on poverty reduction and education, and investment in strengthening health systems across the development spectrum have the potential to substantially improve USMR. Given the widespread effects of COVID-19, considerable effort will be required to maintain and accelerate progress. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd

    Challenge To Apollo: The Soviet Union and The Space Race, 1945-1974

    No full text
    This book is, in essence, sixteen years in the making. First attempted to compile a history of the Soviet space program in 1982 author put together a rough chronology of the main events. A decade later, while living on a couch in a college friend's apartment, he began writing what would be a short history of the Soviet lunar landing program. The first draft was sixty-nine pages long. Late the following year, he decided to expand the topic to handle all early Soviet piloted exploration programs. That work eventually grew into what you are holding in your hand now

    Deep Space Chronicle: A Chronology of Deep Space and Planetary Probes 1958-2000

    No full text
    This monograph contains brief descriptions of all robotic deep space missions attempted since the opening of the space age in 1957. The missions are listed strictly chronologically in order of launch date (not by planetary encounter)

    Rockets and People

    No full text
    Much has been written in the West on the history of the Soviet space program but few Westerners have read direct first-hand accounts of the men and women who were behind the many Russian accomplishments in exploring space.The memoirs of Academician Boris Chertok, translated from the original Russian, fills that gap.Chertok began his career as an electrician in 1930 at an aviation factory near Moscow.Twenty-seven years later, he became deputy to the founding figure of the Soviet space program, the mysterious Chief Designer Sergey Korolev. Chertok s sixty-year-long career and the many successes and failures of the Soviet space program constitute the core of his memoirs, Rockets and People. These writings are spread over four volumes. This is volume I. Academician Chertok not only describes and remembers, but also elicits and extracts profound insights from an epic story about a society s quest to explore the cosmos. In Volume 1, Chertok describes his early years as an engineer and ends with the mission to Germany after the end of World War II when the Soviets captured Nazi missile technology and expertise. Volume 2 takes up the story with the development of the world s first intercontinental ballistic missile ICBM) and ends with the launch of Sputnik and the early Moon probes. In Volume 3, Chertok recollects the great successes of the Soviet space program in the 1960s including the launch of the world s first space voyager Yuriy Gagarin as well as many events connected with the Cold War. Finally, in Volume 4, Chertok meditates at length on the massive Soviet lunar project designed to beat the Americans to the Moon in the 1960s, ending with his remembrances of the Energiya-Buran project

    Phase Pure Synthesis and Morphology Dependent Magnetization in Mn Doped ZnO Nanostructures

    No full text
    Zn0.95Mn0.05O nanostructures were synthesized using sol gel derived autocombustion technique. As-burnt samples were thermally annealed at different temperatures (400, 600, and 800°C) for 8 hours to investigate their effect on structural morphology and magnetic behavior. X-ray diffraction and scanning electron microscopic studies demonstrated the improvement in crystallinity of phase pure wurtzite structure of Mn doped ZnO with variation of annealing temperature. Energy dispersive X-ray elemental compositional analysis confirmed the exact nominal compositions of the reactants. Electrical resistivity measurements were performed with variation in temperature, which depicted the semiconducting nature similar to parent ZnO after 5 at% Mn doping. Magnetic measurements by superconducting quantum interference device detected an enhanced trend of ferromagnetic interactions in thermally annealed compositions attributed to the improved structural morphology and crystalline refinement process

    Beyond Earth : a chronicle of deep space exploration, 1958-2016 /

    No full text
    This is a completely updated and revised version of a monograph published in 2002 by the NASA History Office under the original title Deep Space Chronicle: A Chronology of Deep Space and Planetary Probes, 1958-2000. This new edition not only adds all events in robotic deep space exploration after 2000 and up to the end of 2016, but it also completely corrects and updates all accounts of missions from 1958 to 2000--Provided by publisher.Includes bibliographical references and index.This is a completely updated and revised version of a monograph published in 2002 by the NASA History Office under the original title Deep Space Chronicle: A Chronology of Deep Space and Planetary Probes, 1958-2000. This new edition not only adds all events in robotic deep space exploration after 2000 and up to the end of 2016, but it also completely corrects and updates all accounts of missions from 1958 to 2000--Provided by publisher.Mode of access: Internet

    Enhanced Magnetization of Sol-Gel Synthesized Pb-Doped Strontium Hexaferrites Nanocrystallites at Low Temperature

    No full text
    Effect of Pb doping on the structural and low temperature magnetic properties of SrPbxFe12-xO19 (x=0,0.1,0.2,0.3,and  0.4), synthesized by sol-gel autocombustion technique, has been investigated. The powder samples were sintered at 800°C for 2 h in order to develop the stable hexagonal phase, characteristic of the SrFe12O19 structure. The consequences of Pb substitution (at iron sites) on various structural parameters like lattice constants, unit cell volume, crystallite size, and porosity have been discussed. Fourier transform infrared frequency bands were utilized to determine the formation of tetrahedral and octahedral clusters of M-type ferrites. Hexagonal texture of the grains, a characteristic of the hexagonal crystal structure of SrFe12O19, was refined by Pb substitution. The magnetic properties, determined using a vibrating sample magnetometer, revealed that saturation magnetization decreased, while coercivity was increased with the increase of Pb contents. However, the increased squareness ratio and hence the energy product motivate the utilization of these ferrite compositions where hard magnetic characteristics are required. The increased values of saturation magnetization were observed at reduced temperature of 200 K, attributable to the better spin alignments of individual magnetic moments at low temperature

    RKKY magnetic interactions in chemically synthesized Zn0.95−xFe0.05AlxO (x = 0, 0.03, 0.05, 0.07) nanocrystallites

    Get PDF
    Chemically derived auto-combustion technique is employed to synthesize the Zn0.95−xFe0.05AlxO (x = 0, 0.03, 0.05, 0.07) nano-crystallites. The salient similarities between variations in lattice parameters, crystallite size, morphology, electrical resistivity and saturation magnetization designated a strong association between these properties. X-ray diffraction studies of all compositions revealed the phase pure wurtzite crystal structure with space group P63mc. The lattice parameters and crystallite size are changed with doping of Al attributed to the diversity in the size of ionic radii. Scanning electron micrographs revealed that Al doping affects the size and shape of grains in synthesized compositions. Temperature dependent electrical resistivity shows a decreased trend with the rise of temperature, confirming the semiconducting nature of compositions. The lower resistivity and enhanced saturation magnetization values in Al doped compositions correspond to the increase in density of carriers. Carrier mediated RKKY interactions are found to enhance magnetization
    corecore