
Arabian Journal of Chemistry (2017) 10, S1204–S1208

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
King Saud University

Arabian Journal of Chemistry

www.ksu.edu.sa
www.sciencedirect.com
ORIGINAL ARTICLE
RKKY magnetic interactions in chemically

synthesized Zn0.95�xFe0.05AlxO (x = 0, 0.03, 0.05,

0.07) nanocrystallites
* Corresponding author. Tel.: +966 535764026.

E-mail addresses: ahayat@ksu.edu.sa, asifawan@kaist.ac.kr (A.

Mahmood).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.arabjc.2013.02.017

1878-5352 ª 2013 King Saud University. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Shahid M. Ramay
a
, Murtaza Saleem

c
, Shahid Atiq

c
, Saadat A. Siddiqi

d
,

Muhammad Imran a, Yousef S. Al-Zeghayer a,b, Abdulrhman S. Al-Awadi a,

Sajjad Haider a, Asif Mahmood a,*
a Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
b Supervisor of Industrial Catalysts Research Chair (KSU), Saudi Arabia
c Centre for Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
d Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Defence Road, Off
Raiwind Road, Lahore, Pakistan
Received 6 November 2012; accepted 20 February 2013
Available online 5 March 2013
KEYWORDS

Diluted magnetic semicon-

ductors;

Auto-combustion;

Magnetic properties;

RKKY interactions
Abstract Chemically derived auto-combustion technique is employed to synthesize the

Zn0.95�xFe0.05AlxO (x = 0, 0.03, 0.05, 0.07) nano-crystallites. The salient similarities between vari-

ations in lattice parameters, crystallite size, morphology, electrical resistivity and saturation magne-

tization designated a strong association between these properties. X-ray diffraction studies of all

compositions revealed the phase pure wurtzite crystal structure with space group P63mc. The lattice

parameters and crystallite size are changed with doping of Al attributed to the diversity in the size of

ionic radii. Scanning electron micrographs revealed that Al doping affects the size and shape of

grains in synthesized compositions. Temperature dependent electrical resistivity shows a decreased

trend with the rise of temperature, confirming the semiconducting nature of compositions. The

lower resistivity and enhanced saturation magnetization values in Al doped compositions

correspond to the increase in density of carriers. Carrier mediated RKKY interactions are found

to enhance magnetization.
ª 2013 King Saud University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Diluted magnetic semiconductors (DMSs) have recently
gained much interest due to the availability of data processing

and storage facilities in single materials (Saleem et al., 2011a;
Wolf et al., 2001). DMS materials are prospective candidates
for applications in electronics technology involving the spin
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degree of freedom of electrons (Wolf et al., 2001; Fukumura
et al., 2004; Pearton et al., 2005). The main objective is to
fabricate crystalline materials with room temperature (RT)

ferromagnetism that can make it possible to establish the spin
based technology. An extensive research work has been
performed for preparation and characterization of transition

metal (TMs) doped oxide semiconducting materials like
ZnO, TiO2, SnO2, etc. (Coey et al., 2004, 2005; Hong et al.,
2004 ). In II–VI oxide semiconducting materials, TM (Mn,

Ni, Co and Fe) doped ZnO has attracted a great deal of inter-
est theoretically as well as experimentally, due to its promising
semiconducting and RT ferromagnetic properties (Ahmed
et al., 2012a,b; Saleem et al., 2012 ). It was observed that

ferromagnetic behavior in these materials strongly associated
with crystal structure, grain size and concentration of dopants
(Gupta et al., 2007; Venkatesan et al., 2004). The origin of

ferromagnetism in DMSs is still a subject of controversy
among research community. It was reported that secondary
phases and clusters of TMs might be responsible for RT

ferromagnetism in TM doped ZnO (Kim et al., 2002; Park
et al., 2004). The ferromagnetic behavior in pure ZnO without
doping of TMs was also observed by some groups (Ahmed

et al.,2011a,b). According to most recent reports about DMSs,
ferromagnetic interactions might be associated with vacancy
induced mechanism (Yu et al., 2010), hole mediated Zener field
model, (Yang et al., 2009) and carrier (electrons) mediated

Rudermann Kittel Kasuaya Yoshida (RKKY) interactions
(Tong et al., 2010; Saleem et al., 2011b). Therefore, careful
studies with phase pure high quality DMS compositions are

needed to resolve this controversy. Though, there are only
few reports regarding the correlation between structural,
morphological and magnetic properties for Fe doped ZnO

nanocrystallites in this research work, Fe doped ZnO nano-
crystallites have been synthesized using a sol–gel derived
auto-combustion technique with co-doping of Al content (at

3, 5 and 7%). The substitution of Al3+ content at Zn2+ sites
would significantly enhance the concentration of carriers in
host structure. Carrier mediated RKKY mechanism possibly
responsible for RT ferromagnetism in phase pure TMs doped

ZnO based DMSs can be studied in this way by varying the
concentration of Al content.
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Figure 1 XRD spectra of Zn0.95Fe0.05AlxO (x= 0, 0.03, 0.05,

0.07) samples.
2. Experimental

In order to synthesize Zn0.95Fe0.05AlxO (x = 0, 0.03, 0.05,
0.07) nanocrystallites, stoichiometric calculated ratios of

analytical grade Zn nitrate [Zn (NO3)2Æ6H2O], Fe nitrate
[Fe(NO3)3Æ6H2O], Al nitrate [Al(NO3)3Æ6H2O] and citric acid
(C6H8O7) were dissolved in 75 ml distilled water. Metal ni-

trates to citric acid ratios were taken as 1:2. Citric acid was
used here as fuel agent. The estimated pH of the initial solution
was measured at 3.5. This prepared solution was vigorously
stirred and heated at 200 �C. The xerogel was attained in a

short time of 2 h. Then, the temperature was raised to
300 �C and xerogel was transformed into fine particles by an
intense self propagated exothermic auto-combustion reaction.

As-synthesized resulting powder compositions were character-
ized using X-ray diffraction (XRD), scanning electron micro-
scope (SEM), two point probe electrical resistivity setup, and

physical property measurement setup (PPMS) for various
properties’ measurements. Rigaku, ultm IV XRD was used
to explore the structural features and phase identification at
40 kV and 40 mA with Cu Ka1 radiation (k = 1.540598 Å)
and a step scan size of 0.03. Jeol JSM 6610 V SEM was oper-

ated at 20 kV in the SEI mode in order to observe morphology
of the samples. The Quantum Design PPMS was employed at
±13 kO to study the magnetic properties of the samples. The

powdered samples were pelletized and sintered using Apex
hydraulic and muffle furnace for electrical resistivity measure-
ments by a two point probe measurement setup.

3. Results and discussion

3.1. X-ray diffraction analysis

Fig. 1 shows the XRD patterns of Zn0.95Fe0.05AlxO (x = 0,

0.03, 0.05, 0.07) nanocrystallites. ZnO is a fairly moderate
semiconductor material, as it retains its wurtzite hexagonal
crystal structure while doped with diluted amounts of TM ele-
ments (Pei et al., 2007, 2008; Saleem et al., 2010, 2011a; Deka

and Joy, 2007 ). A similar fact has been corroborated in the
XRD patterns of all synthesized compositions as represented
in Fig. 1. The partial co-substitution of Fe and Al does not dis-

turb the wurtzite crystal structure with P63mc space group of
parent ZnO, as diffraction peaks in all compositions were
absolutely indexed. However, the lower intensity, broadening

and shifting of diffraction peaks are attributed to the doping
effects and difference in ionic radii of Zn (0.74 Å), Fe
(0.63 Å) and Al (0.535 Å) atoms Saleem et al. (2011a) and

Dinesha et al. (2009). The lattice parameters ‘a’ and ‘c’ of
the synthesized DMS compositions were calculated using the
‘CELL’ software (Saleem et al., 2011a), which provides a very
convenient and reliable way of measurement for quite complex

wurtzite hexagonal like crystal structures. The lattice parame-
ters ‘a’ and ‘c’, were found to vary from 3.2282 to 3.2512 Å
and 5.2311 to 5.2466 Å, respectively, with the increase of Al

content, as shown in Fig. 2. The breadth of the XRD charac-
teristic peaks associated with the full width half maximum
(FWHM) values observed was significantly much higher in

Al doped compositions which indicated the lower size of crys-
tallites. The estimated crystallite size of all compositions has
been calculated using Scherrer relations (Pei et al., 2008) by
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Figure 2 Variation of lattice constants ‘a’ and ‘c’ with the

increase of Al content.
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Figure 3 Variation of crystallite size with the increase of Al

content.
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considering the position and broadening of most intense char-
acteristic diffraction peak (101). The evaluated crystallite size
of Mn doped ZnO sample was found at 56.3 nm, which was

decreased to 35.9 nm with an increase in Al content up to
x = 0.07 as shown in Fig. 3.
Figure 4 SEM micrographs of Zn0.9
3.2. Morphological analysis

Fig. 4a and b represents the SEM micrographs of
Zn0.95Fe0.05AlxO (x = 0, 0.07) nanocrystallite compositions.
The grains appeared in various shapes and sizes in both micro-

graphs. There are no sharp and clear boundaries indicated in
morphologies. However, it can be observed that the size of
the grains is obviously smaller in the Al doped composition
which indirectly supports the XRD measurements.

3.3. Electrical resistivity

The dc electrical resistivity of pelletized DMS compositions

Zn0.95Fe0.05AlxO (x = 0, 0.03, 0.05, 0.07) is expected to de-
crease by the partial substitution of Al3+ atoms at Zn2+ sites.
The composition without the doping of Al content showed a

maximum value of resistivity of 7.79 · 106 X-cm as represented
in Fig. 5. It was found that electrical resistivity decreased with
the increase of the doping content of Al. The lowest values of

resistivity were found in the composition doped with maxi-
mum Al content (x = 0.07). This trend might be attributed
to the increase of concentration of free carriers (electrons) in
the structure. The overall behavior of electrical resistivity ob-

served in all the synthesized compositions was that the resistiv-
ity values reduced with the increase of temperature revealing
the semiconducting nature of DMSs.

3.4. Magnetic properties

Fig. 6 represents the room temperature field dependent mag-

netic hysteresis (M–H) loops of Zn0.95Fe0.05AlxO (x= 0,
0.03, 0.05, 0.07) DMS compositions which clearly indicate
the existence of ferromagnetic interactions. The partial

substitution of Fe ions at the regular Zn sites could be
attributed to this ferromagnetism. The origin of ferromagne-
tism in ZnO based DMS materials has remained controversial
from the last decade. It was observed in XRD analysis that Fe

and Al atoms successfully substitute the regular Zn sites. As no
clusters or secondary phases were detected in XRD patterns,
the option of the rise of ferromagnetism due to these phases

can be eliminated. In addition, ZnO has natural n-type
conductivity. Therefore, introduction of ferromagnetic
interactions because of hole mediated Zener field model could

not be possible. According to RKKY theory (Sharma et al.,
5Fe0.05AlxO (x = 0, 0.07) samples.
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Figure 5 Temperature dependent DC electrical resistivity of

Zn0.95Fe0.05AlxO (x = 0, 0.03, 0.05, 0.07).
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Figure 6 Field dependent M–H loops of Zn0.95Fe0.05AlxO

(x = 0, 0.03, 0.05, 0.07) samples.
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2007; Priour et al., 2004) about ferromagnetism in ZnO based
DMS materials, the exchange interaction between local spin-
polarized electrons (such as the electrons of Fe2+ ions) and
conductive electrons was the main cause of magnetism. The

presence of free carriers has a considerable importance for
the appearance of ferromagnetic behavior in Fe doped ZnO.
In addition, it appears that Al doping affects the concentration

of carriers in the structure, which are responsible for the estab-
lishment of magnetic phase. Consequently, the value of satura-
tion magnetization (Ms) obtained from the M–H loops was

observed to increase from a value of 0.077–0.160 emu/g, with
the increase of Al content up to x= 0.07. Hence, the addi-
tional doping of Al in ZnO based DMS materials significantly

enhances the concentration of carriers which plays its vital role
in magnetic phase establishment through carrier mediated
RKKY exchange interactions.

4. Conclusion

Zn0.95Fe0.05AlxO (x = 0, 0.03, 0.05, 0.07) nanocrystallites of
DMSs was successfully synthesized in phase pure form using

sol gel derived auto combustion technique. Wurtzite type
hexagonal crystal structure was detected in all compositions.
It was observed that lattice parameters, crystallite size and
electrical resistivity varied with the doping of Al. The decrease

of resistivity with the rise of temperature attributed to the
semiconducting nature of materials. The concentration of free
carries was observed to increase with the increase of Al content

which enhanced magnetization through carrier mediated
mechanism. It is concluded that carrier mediated RKKY ex-
change interactions are mainly responsible for ferromagnetism

in ZnO based DMS materials.
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