21 research outputs found

    Covalent functionalized self-assembled lipo-polymerosome bearing Amphotericin B for better management of leishmaniasis and its toxicity evaluation

    No full text
    Amphotericin B remains the preferred choice for leishmanial infection, but it has limited clinical applications due to substantial dose limiting toxicities. In the present work, AmB has been formulated in lipo-polymerosome (L-Psome) by spontaneous self-assembly of synthesized glycol chitosan-stearic acid copolymer. The optimized L-Psome formulation with vesicle size of 243.5 ± 17.9 nm, PDI of 0.168 ± 0.08 and zeta potential of (+) 27.15 ± 0.46 mV with 25.59 ± 0.87% AmB loading was obtained. The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images suggest nearly spherical morphology of L-Psome. An in vitro study showed comparatively sustained AmB release (66.082 ± 1.73% within 24 h) and high plasma stability compared to commercial Ambisome and Fungizone, where glycol chitosan content was found to be efficient in preventing L-Psome destabilization in the presence of plasma protein. In vitro and in vivo toxicity studies revealed less toxicity of AmB-L-Psome compared to commercialized Fungizone and Ambisome favored by monomeric form of AmB within L-Psome, observed by UV–visible spectroscopy. Experimental results of in vitro (macrophage amastigote system) and in vivo (Leishmania donovani infected hamsters) illustrated the efficacy of AmB-L-Psome to augment effective antileishmanial properties supported by upregulation of Th-1 cytokines (TNF-α, IL-12 and IFN-γ) and inducible nitric oxide synthase, and downregulation of Th-2 cytokines (TGF-β, IL-10 and IL-4), measured by quantitative mRNA analysis by real time PCR (RT-PCR). Conclusively, developed L-Psome system could be a viable alternative to the current less stable, toxic commercial formulations and developed as a highly efficacious drug delivery system

    Self assembled ionically sodium alginate cross-linked amphotericin B encapsulated glycol chitosan stearate nanoparticles: applicability in better chemotherapy and non-toxic delivery in visceral leishmaniasis

    No full text
    Objectives: To investigate the applicability, localization, biodistribution and toxicity of self assembled ionically sodium alginate cross-linked AmB loaded glycol chitosan stearate nanoparticles for effective management of visceral leishmaniasis. Methods: Here, we fabricated Amphotericin B (AmB) encapsulated sodium alginate-glycol chitosan stearate nanoparticles (AmB-SA-GCS-NP) using strong electrostatic interaction between oppositely charged polymer and copolymer by ionotropic complexation method. The tagged FAmB-SA-GCS-NP was compared with tagged FAmB for in vitro macrophagic uptake in J774A macrophages and in vivo localization in liver, spleen, lung and kidney tissues. The AmB-SA-GCS-NP and plain AmB were compared for in vitro and in vivo antileishmanial activity, pharmacokinetics, organ distribution and toxicity profiling. Results: The morphology of SA-GCS-NP revealed as nanocrystal (size, 196.3 ± 17.2 nm; PDI, 0.216 ± 0.078; zeta potential, (−) 32.4 ± 5.1 mV) by field emission scanning electron microscopy and high resolution transmission electron microscopy. The macrophage uptake and in vivo tissue localization studies shows tagged FAmB-SA-GCS-NP has significantly higher (~1.7) uptake compared to tagged FAmB. The biodistribution study of AmB-SA-GCS-NP showed more localized distribution towards Leishmania infected organs i.e. spleen and liver while lesser towards kidney. The in vitro (IC<SUB>50</SUB>, 0.128 ± 0.024 μg AmB/ml) and in vivo (parasite inhibition, 70.21 ± 3.46%) results of AmB-SA-GCS-NP illustrated significantly higher (P &#60; 0.05) efficacy over plain AmB. The monomeric form of AmB within SA-GCS-NP, observed by UV-visible spectroscopy, favored very less in vitro and in vivo toxicities compared to plain AmB. Conclusion: The molecular organization, toxicity studies, desired localization and biodistribution of cost effective AmB-SA-GCS-NP was found to be highly effective and can be proved as practical delivery platform for better management of leishmaniasis

    Vitamin B<sub>12</sub> Grafted Layer-by-Layer Liposomes Bearing <i>HBsAg</i> Facilitate Oral Immunization: Effect of Modulated Biomechanical Properties

    No full text
    Adhesion forces of nanoparticulate materials toward biological membrane are crucial for designing a delivery system for therapeutic molecules and vaccines. The present study aims to investigate the impact of surface roughness of the nanoparticulate system in oral delivery of antigen and its targeting to toward intestinal antigen presenting cells. To evaluate this hypothesis, layer-by-layer coated liposomes (LBL-Lipo) were fabricated using sodium alginate and Vitamin B<sub>12</sub> conjugated Chitosan (VitB<sub>12</sub>–Chi) as anionic and cationic polyelectrolyte, respectively. Change in surface roughness was observed on changes in pH from gastric to intestinal conditions attributed to increase and decrease in charge density on VitB<sub>12</sub>–Chi. Surface roughness was measured in terms of root–mean–square measured by topographical analysis using atomic force microscopy. LBL-Lipo were further characterized for their size, zeta potential, and release behavior to evaluate the potential for oral vaccine delivery. In vitro cell uptake in macrophage cells (J-744) shows about 2- and 3.1-fold increased uptake of rough LBL-Lipo over smooth LBL-Lipo at 37 °C (endocytosis) and 4 °C (endocytosis inhibition) indicating improved biological interaction. Further in vivo immunization study revealed that prototype formulations were able to produce 4.8- and 3.3-fold higher IgG and IgA levels in serum and feces, respectively, in comparison to smooth LBL-Lipo

    Covalent Functionalized Self-Assembled Lipo-Polymerosome Bearing Amphotericin B for Better Management of Leishmaniasis and Its Toxicity Evaluation

    No full text
    Amphotericin B remains the preferred choice for leishmanial infection, but it has limited clinical applications due to substantial dose limiting toxicities. In the present work, AmB has been formulated in lipo-polymerosome (L-Psome) by spontaneous self-assembly of synthesized glycol chitosan-stearic acid copolymer. The optimized L-Psome formulation with vesicle size of 243.5 ± 17.9 nm, PDI of 0.168 ± 0.08 and zeta potential of (+) 27.15 ± 0.46 mV with 25.59 ± 0.87% AmB loading was obtained. The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images suggest nearly spherical morphology of L-Psome. An <i>in vitro</i> study showed comparatively sustained AmB release (66.082 ± 1.73% within 24 h) and high plasma stability compared to commercial Ambisome and Fungizone, where glycol chitosan content was found to be efficient in preventing L-Psome destabilization in the presence of plasma protein. <i>In vitro</i> and <i>in vivo</i> toxicity studies revealed less toxicity of AmB-L-Psome compared to commercialized Fungizone and Ambisome favored by monomeric form of AmB within L-Psome, observed by UV–visible spectroscopy. Experimental results of <i>in vitro</i> (macrophage amastigote system) and <i>in vivo</i> (<i>Leishmania donovani</i> infected hamsters) illustrated the efficacy of AmB-L-Psome to augment effective antileishmanial properties supported by upregulation of Th-1 cytokines (TNF-α, IL-12 and IFN-γ) and inducible nitric oxide synthase, and downregulation of Th-2 cytokines (TGF-β, IL-10 and IL-4), measured by quantitative mRNA analysis by real time PCR (RT-PCR). Conclusively, developed L-Psome system could be a viable alternative to the current less stable, toxic commercial formulations and developed as a highly efficacious drug delivery system
    corecore