135 research outputs found

    Genetically encoded polymers for drug delivery

    Get PDF
    I will highlight two technologies developed in my laboratory for the delivery of diverse drugs by genetically encoded polymer drug carriers. First, I will describe a new drug delivery system that we have developed for small molecule cancer chemotherapeutics. This methodology —attachment-triggered self-assembly of recombinant peptide polymers— can package small molecule cancer drugs with a range of hydrophobicity into soluble nanoparticles of a recombinant peptide polymer. These nanoparticles increase the solubility, plasma half-life, and tumor accumulation of the drug, which translates to improved efficacy of the nanoparticle formulation as compared to free drug. Examples of encapsulating doxorubicin, paclitaxel, and gemcitabine —three drugs with vastly different structures and physico-chemical properties— will be presented to illustrate the versatility of this new technology for drug delivery. I will also discuss an injectable delivery system based on thermally sensitive polypeptides for the sustained and tunable release of peptide drugs from a subcutaneous injection site that we have developed for treatment of type 2 diabetes

    Two-dimensional protein crystallization via metal-ion coordination by naturally occurring surface histidines

    Get PDF
    A powerful and potentially general approach to the targeting and crystallization of proteins on lipid interfaces through coordination of surface histidine residues to lipid-chelated divalent metal ions is presented. This approach, which should be applicable to the crystallization of a wide range of naturally occurring or engineered proteins, is illustrated here by the crystallization of streptavidin on a monolayer of an iminodiacetate-Cu(II) lipid spread at the air-water interface. This method allows control of the protein orientation at interfaces, which is significant for the facile production of highly ordered protein arrays and for electron density mapping in structural analysis of two-dimensional crystals. Binding of native streptavidin to the iminodiacetate-Cu lipids occurs via His-87, located on the protein surface near the biotin binding pocket. The two-dimensional streptavidin crystals show a previously undescribed microscopic shape that differs from that of crystals formed beneath biotinylated lipids

    Protein patterning by UV-induced photodegradation of poly(oligo(ethylene glycol) methacrylate) brushes

    Get PDF
    The UV photodegradation of protein-resistant poly(oligo(ethylene glycol) methacrylate) (POEGMA) bottle-brush films, grown on silicon oxide by surface-initiated atom radical transfer polymerization, was studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Exposure to light with a wavelength of 244 nm caused a loss of polyether units from the brush structure and the creation of aldehyde groups that could be derivatized with amines. An increase was measured in the coefficient of friction of the photodegraded polymer brush compared to the native brush, attributed to the creation of a heterogeneous surface film, leading to increased energy dissipation through film deformation and the creation of new polar functional groups at the surface. Exposure of the films through a photomask yielded sharp, well-defined patterns. Analysis of topographical images showed that physical removal of material occurred during exposure, at a rate of 1.35 nm J−1 cm2. Using fluorescence microscopy, the adsorption of labeled proteins onto the exposed surfaces was studied. It was found that protein strongly adsorbed to exposed areas, while the masked regions retained their protein resistance. Exposure of the film to UV light from a scanning near-field optical microscope yielded submicrometer-scale patterns. These data indicate that a simple, rapid, one-step photoconversion of the poly(OEGMA) brush occurs that transforms it from a highly protein-resistant material to one that adsorbs protein and can covalently bind amine-containing molecules and that this photoconversion can be spatially addressed with high spatial resolution

    Morphing Low-Affinity Ligands into High-Avidity Nanoparticles by Thermally Triggered Self-Assembly of a Genetically Encoded Polymer

    Get PDF
    Multivalency is the increase in avidity resulting from the simultaneous interaction of multiple ligands with multiple receptors. This phenomenon, seen in antibody-antigen and virus-cell membrane interactions, is useful in designing bioinspired materials for targeted delivery of drugs or imaging agents. While increased avidity offered by multivalent targeting is attractive, it can also promote nonspecific receptor interaction in non-target tissues, reducing the effectiveness of multivalent targeting. Here, we present a thermal targeting strategy - Dynamic Affinity Modulation (DAM) - using Elastin-like polypeptide diblock copolymers (ELPBCs) that self-assemble from a low-affinity to high-avidity state by a tunable thermal “switch”, thereby restricting activity to the desired site of action. We used an in vitro cell binding assay to investigate the effect of the thermally triggered self-assembly of these ELPBCs on their receptor-mediated binding and cellular uptake. The data presented herein show that: (1) ligand presentation does not disrupt ELPBC self-assembly; (2) both multivalent ligand presentation and upregulated receptor expression are needed for receptor-mediated interaction; (3) increased size of the hydrophobic segment of the block copolymer promotes multivalent interaction with membrane receptors, potentially due to changes in the nanoscale architecture of the micelle; and (4) nanoscale presentation of the ligand is important, as presentation of the ligand by micron-sized aggregates of an ELP showed a low level of binding/uptake by receptor-positive cells compared to its presentation on the corona of a micelle. These data validate the concept of thermally triggered DAM, and provide rational design parameters for future applications of this technology for targeted drug delivery

    Modulating Hierarchical Self-Assembly In Thermoresponsive Intrinsically Disordered Proteins Through High-Temperature Incubation Time

    Full text link
    The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium. Here, we report that high-temperature incubation time is a defining parameter for micro and nanoscale self-assembly of resilin-like IDPs. Interestingly, high-resolution scanning electron microscopy micrographs reveal that an extended incubation time leads to the formation of micron-size rods and ellipsoids that depend on the amino acid sequence. More surprisingly, a prolonged incubation time also induces amino acid composition-dependent formation of short-range nanoscale order, such as periodic lamellar nanostructures. We can correlate the lamellar structures to \b{eta}-sheet formation and demonstrate similarities between the observed nanoscopic structural arrangement and spider silk. We, therefore, suggest that regulating the period of high-temperature incubation, in the one-phase regime, can serve as a unique method of controlling the hierarchical self-assembly mechanism of structurally disordered proteins.Comment: 27pages, 8 figure

    A versatile diffractive maskless lithography for single-shot and serial microfabrication

    Get PDF
    Abstract: We demonstrate a diffractive maskless lithographic system that is capable of rapidly performing both serial and single-shot micropatterning. Utilizing the diffractive properties of phase holograms displayed on a spatial light modulator, arbitrary intensity distributions were produced to form two and three dimensional micropatterns/structures in a variety of substrates. A straightforward graphical user interface was implemented to allow users to load templates and change patterning modes within the span of a few minutes. A minimum resolution of ~700 nm is demonstrated for both patterning modes, which compares favorably to the 232 nm resolution limit predicted by the Rayleigh criterion. The presented method is rapid and adaptable, allowing for the parallel fabrication of microstructures in photoresist as well as the fabrication of protein microstructures that retain functional activity

    Unexpected Multivalent Display of Proteins by Temperature Triggered Self-Assembly of Elastin-like Polypeptide Block Copolymers

    Get PDF
    We report herein the unexpected temperature triggered self-assembly of proteins fused to thermally responsive elastin-like polypeptides (ELPs) into spherical micelles. Six ELP block copolymers (ELPBC) with different hydrophilic and hydrophobic block lengths were genetically fused to two single domain proteins, thioredoxin (Trx) and a fibronectin type III domain (Fn3) that binds the αvβ3 integrin. The self-assembly of these protein-ELPBC fusions as a function of temperature was investigated by UV spectroscopy, light scattering, and cryo-TEM. Self-assembly of the ELPBC was –unexpectedly- retained upon fusion to the two proteins, resulting in the formation of spherical micelles with a hydrodynamic radius that ranged from 24–37 nm, depending on the protein and ELPBC. Cryo-TEM images confirmed the formation of spherical particles with a size that was consistent with that measured by light scattering. The bioactivity of Fn3 was retained when presented by the ELPBC micelles as indicated by the enhanced uptake of the Fn3-decorated ELPBC micelles in comparison to the unimer by cells that overexpress the αvβ3 integrin. The fusion of single domain proteins to ELPBCs may provide a ubiquitous platform for the multivalent presentation of proteins
    corecore